Loading…

State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data

Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of s...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2018-11, Vol.37 (27), p.3975-3990
Main Authors: Marker, David A., Mardon, Russ, Jenkins, Frank, Campione, Joanne, Nooney, Jennifer, Li, Jane, Saydeh, Sharon, Zhang, Xuanping, Shrestha, Sundar, Rolka, Deborah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.7848