Loading…
State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data
Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of s...
Saved in:
Published in: | Statistics in medicine 2018-11, Vol.37 (27), p.3975-3990 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23 |
container_end_page | 3990 |
container_issue | 27 |
container_start_page | 3975 |
container_title | Statistics in medicine |
container_volume | 37 |
creator | Marker, David A. Mardon, Russ Jenkins, Frank Campione, Joanne Nooney, Jennifer Li, Jane Saydeh, Sharon Zhang, Xuanping Shrestha, Sundar Rolka, Deborah |
description | Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources. |
doi_str_mv | 10.1002/sim.7848 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058502509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126267556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</originalsourceid><addsrcrecordid>eNp1kc1Kw0AQxxdRbP0An0ACXrxEZzfdL29S_IKKB_UcNpuJRDZJzSaV4sVH8Bl9Ere1VhA8DDs785s_zPwJOaBwQgHYqS-rE6lGaoMMKWgZA-NqkwyBSRkLSfmA7Hj_DEApZ3KbDJjWCVVMD8nbfWc6_Hz_cDhDF6Hvysp0ZVNHTRHlpcmwQx-ZOo-mLa7_IZ8Zh7XFs2jcVFlZl_VTVC8HjVvirrEh8307w3mUm84sq9YFdNFYVPbIVmGcx_3Vu0seLy8extfx5O7qZnw-iW0y0irWqEQuCwuqGAnLtSwUSCYsAEcaIs9UoYWyHJQtMpkwy40aAVrOE6EMS3bJ8bfutG1e-rBiWpXeonOmxqb3KQOueDgZ6IAe_UGfm74NOwWKMsGE5Fz8Ctq28b7FIp224WztPKWQLgxJgyHpwpCAHq4E-6zCfA3-OBCA-Bt4LR3O_xVK729ul4JfPr2V6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126267556</pqid></control><display><type>article</type><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</creator><creatorcontrib>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</creatorcontrib><description>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7848</identifier><identifier>PMID: 29931829</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Big Data ; composite estimation ; Diabetes ; HRS ; MarketScan ; Medical statistics ; Morbidity ; NAMCS ; NHANES ; prediabetes</subject><ispartof>Statistics in medicine, 2018-11, Vol.37 (27), p.3975-3990</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</citedby><cites>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</cites><orcidid>0000-0003-1160-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marker, David A.</creatorcontrib><creatorcontrib>Mardon, Russ</creatorcontrib><creatorcontrib>Jenkins, Frank</creatorcontrib><creatorcontrib>Campione, Joanne</creatorcontrib><creatorcontrib>Nooney, Jennifer</creatorcontrib><creatorcontrib>Li, Jane</creatorcontrib><creatorcontrib>Saydeh, Sharon</creatorcontrib><creatorcontrib>Zhang, Xuanping</creatorcontrib><creatorcontrib>Shrestha, Sundar</creatorcontrib><creatorcontrib>Rolka, Deborah</creatorcontrib><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</description><subject>Big Data</subject><subject>composite estimation</subject><subject>Diabetes</subject><subject>HRS</subject><subject>MarketScan</subject><subject>Medical statistics</subject><subject>Morbidity</subject><subject>NAMCS</subject><subject>NHANES</subject><subject>prediabetes</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1Kw0AQxxdRbP0An0ACXrxEZzfdL29S_IKKB_UcNpuJRDZJzSaV4sVH8Bl9Ere1VhA8DDs785s_zPwJOaBwQgHYqS-rE6lGaoMMKWgZA-NqkwyBSRkLSfmA7Hj_DEApZ3KbDJjWCVVMD8nbfWc6_Hz_cDhDF6Hvysp0ZVNHTRHlpcmwQx-ZOo-mLa7_IZ8Zh7XFs2jcVFlZl_VTVC8HjVvirrEh8307w3mUm84sq9YFdNFYVPbIVmGcx_3Vu0seLy8extfx5O7qZnw-iW0y0irWqEQuCwuqGAnLtSwUSCYsAEcaIs9UoYWyHJQtMpkwy40aAVrOE6EMS3bJ8bfutG1e-rBiWpXeonOmxqb3KQOueDgZ6IAe_UGfm74NOwWKMsGE5Fz8Ctq28b7FIp224WztPKWQLgxJgyHpwpCAHq4E-6zCfA3-OBCA-Bt4LR3O_xVK729ul4JfPr2V6Q</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Marker, David A.</creator><creator>Mardon, Russ</creator><creator>Jenkins, Frank</creator><creator>Campione, Joanne</creator><creator>Nooney, Jennifer</creator><creator>Li, Jane</creator><creator>Saydeh, Sharon</creator><creator>Zhang, Xuanping</creator><creator>Shrestha, Sundar</creator><creator>Rolka, Deborah</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1160-8364</orcidid></search><sort><creationdate>20181130</creationdate><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><author>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>composite estimation</topic><topic>Diabetes</topic><topic>HRS</topic><topic>MarketScan</topic><topic>Medical statistics</topic><topic>Morbidity</topic><topic>NAMCS</topic><topic>NHANES</topic><topic>prediabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marker, David A.</creatorcontrib><creatorcontrib>Mardon, Russ</creatorcontrib><creatorcontrib>Jenkins, Frank</creatorcontrib><creatorcontrib>Campione, Joanne</creatorcontrib><creatorcontrib>Nooney, Jennifer</creatorcontrib><creatorcontrib>Li, Jane</creatorcontrib><creatorcontrib>Saydeh, Sharon</creatorcontrib><creatorcontrib>Zhang, Xuanping</creatorcontrib><creatorcontrib>Shrestha, Sundar</creatorcontrib><creatorcontrib>Rolka, Deborah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marker, David A.</au><au>Mardon, Russ</au><au>Jenkins, Frank</au><au>Campione, Joanne</au><au>Nooney, Jennifer</au><au>Li, Jane</au><au>Saydeh, Sharon</au><au>Zhang, Xuanping</au><au>Shrestha, Sundar</au><au>Rolka, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-11-30</date><risdate>2018</risdate><volume>37</volume><issue>27</issue><spage>3975</spage><epage>3990</epage><pages>3975-3990</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29931829</pmid><doi>10.1002/sim.7848</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1160-8364</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2018-11, Vol.37 (27), p.3975-3990 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2058502509 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Big Data composite estimation Diabetes HRS MarketScan Medical statistics Morbidity NAMCS NHANES prediabetes |
title | State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%E2%80%90level%20estimation%20of%20diabetes%20and%20prediabetes%20prevalence:%20Combining%20national%20and%20local%20survey%20data%20and%20clinical%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Marker,%20David%20A.&rft.date=2018-11-30&rft.volume=37&rft.issue=27&rft.spage=3975&rft.epage=3990&rft.pages=3975-3990&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7848&rft_dat=%3Cproquest_cross%3E2126267556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126267556&rft_id=info:pmid/29931829&rfr_iscdi=true |