Loading…

State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data

Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of s...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2018-11, Vol.37 (27), p.3975-3990
Main Authors: Marker, David A., Mardon, Russ, Jenkins, Frank, Campione, Joanne, Nooney, Jennifer, Li, Jane, Saydeh, Sharon, Zhang, Xuanping, Shrestha, Sundar, Rolka, Deborah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23
cites cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23
container_end_page 3990
container_issue 27
container_start_page 3975
container_title Statistics in medicine
container_volume 37
creator Marker, David A.
Mardon, Russ
Jenkins, Frank
Campione, Joanne
Nooney, Jennifer
Li, Jane
Saydeh, Sharon
Zhang, Xuanping
Shrestha, Sundar
Rolka, Deborah
description Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.
doi_str_mv 10.1002/sim.7848
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2058502509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126267556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</originalsourceid><addsrcrecordid>eNp1kc1Kw0AQxxdRbP0An0ACXrxEZzfdL29S_IKKB_UcNpuJRDZJzSaV4sVH8Bl9Ere1VhA8DDs785s_zPwJOaBwQgHYqS-rE6lGaoMMKWgZA-NqkwyBSRkLSfmA7Hj_DEApZ3KbDJjWCVVMD8nbfWc6_Hz_cDhDF6Hvysp0ZVNHTRHlpcmwQx-ZOo-mLa7_IZ8Zh7XFs2jcVFlZl_VTVC8HjVvirrEh8307w3mUm84sq9YFdNFYVPbIVmGcx_3Vu0seLy8extfx5O7qZnw-iW0y0irWqEQuCwuqGAnLtSwUSCYsAEcaIs9UoYWyHJQtMpkwy40aAVrOE6EMS3bJ8bfutG1e-rBiWpXeonOmxqb3KQOueDgZ6IAe_UGfm74NOwWKMsGE5Fz8Ctq28b7FIp224WztPKWQLgxJgyHpwpCAHq4E-6zCfA3-OBCA-Bt4LR3O_xVK729ul4JfPr2V6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126267556</pqid></control><display><type>article</type><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</creator><creatorcontrib>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</creatorcontrib><description>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7848</identifier><identifier>PMID: 29931829</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Big Data ; composite estimation ; Diabetes ; HRS ; MarketScan ; Medical statistics ; Morbidity ; NAMCS ; NHANES ; prediabetes</subject><ispartof>Statistics in medicine, 2018-11, Vol.37 (27), p.3975-3990</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</citedby><cites>FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</cites><orcidid>0000-0003-1160-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marker, David A.</creatorcontrib><creatorcontrib>Mardon, Russ</creatorcontrib><creatorcontrib>Jenkins, Frank</creatorcontrib><creatorcontrib>Campione, Joanne</creatorcontrib><creatorcontrib>Nooney, Jennifer</creatorcontrib><creatorcontrib>Li, Jane</creatorcontrib><creatorcontrib>Saydeh, Sharon</creatorcontrib><creatorcontrib>Zhang, Xuanping</creatorcontrib><creatorcontrib>Shrestha, Sundar</creatorcontrib><creatorcontrib>Rolka, Deborah</creatorcontrib><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</description><subject>Big Data</subject><subject>composite estimation</subject><subject>Diabetes</subject><subject>HRS</subject><subject>MarketScan</subject><subject>Medical statistics</subject><subject>Morbidity</subject><subject>NAMCS</subject><subject>NHANES</subject><subject>prediabetes</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1Kw0AQxxdRbP0An0ACXrxEZzfdL29S_IKKB_UcNpuJRDZJzSaV4sVH8Bl9Ere1VhA8DDs785s_zPwJOaBwQgHYqS-rE6lGaoMMKWgZA-NqkwyBSRkLSfmA7Hj_DEApZ3KbDJjWCVVMD8nbfWc6_Hz_cDhDF6Hvysp0ZVNHTRHlpcmwQx-ZOo-mLa7_IZ8Zh7XFs2jcVFlZl_VTVC8HjVvirrEh8307w3mUm84sq9YFdNFYVPbIVmGcx_3Vu0seLy8extfx5O7qZnw-iW0y0irWqEQuCwuqGAnLtSwUSCYsAEcaIs9UoYWyHJQtMpkwy40aAVrOE6EMS3bJ8bfutG1e-rBiWpXeonOmxqb3KQOueDgZ6IAe_UGfm74NOwWKMsGE5Fz8Ctq28b7FIp224WztPKWQLgxJgyHpwpCAHq4E-6zCfA3-OBCA-Bt4LR3O_xVK729ul4JfPr2V6Q</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Marker, David A.</creator><creator>Mardon, Russ</creator><creator>Jenkins, Frank</creator><creator>Campione, Joanne</creator><creator>Nooney, Jennifer</creator><creator>Li, Jane</creator><creator>Saydeh, Sharon</creator><creator>Zhang, Xuanping</creator><creator>Shrestha, Sundar</creator><creator>Rolka, Deborah</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1160-8364</orcidid></search><sort><creationdate>20181130</creationdate><title>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</title><author>Marker, David A. ; Mardon, Russ ; Jenkins, Frank ; Campione, Joanne ; Nooney, Jennifer ; Li, Jane ; Saydeh, Sharon ; Zhang, Xuanping ; Shrestha, Sundar ; Rolka, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>composite estimation</topic><topic>Diabetes</topic><topic>HRS</topic><topic>MarketScan</topic><topic>Medical statistics</topic><topic>Morbidity</topic><topic>NAMCS</topic><topic>NHANES</topic><topic>prediabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marker, David A.</creatorcontrib><creatorcontrib>Mardon, Russ</creatorcontrib><creatorcontrib>Jenkins, Frank</creatorcontrib><creatorcontrib>Campione, Joanne</creatorcontrib><creatorcontrib>Nooney, Jennifer</creatorcontrib><creatorcontrib>Li, Jane</creatorcontrib><creatorcontrib>Saydeh, Sharon</creatorcontrib><creatorcontrib>Zhang, Xuanping</creatorcontrib><creatorcontrib>Shrestha, Sundar</creatorcontrib><creatorcontrib>Rolka, Deborah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marker, David A.</au><au>Mardon, Russ</au><au>Jenkins, Frank</au><au>Campione, Joanne</au><au>Nooney, Jennifer</au><au>Li, Jane</au><au>Saydeh, Sharon</au><au>Zhang, Xuanping</au><au>Shrestha, Sundar</au><au>Rolka, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-11-30</date><risdate>2018</risdate><volume>37</volume><issue>27</issue><spage>3975</spage><epage>3990</epage><pages>3975-3990</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Many statisticians and policy researchers are interested in using data generated through the normal delivery of health care services, rather than carefully designed and implemented population‐representative surveys, to estimate disease prevalence. These larger databases allow for the estimation of smaller geographies, for example, states, at potentially lower expense. However, these health care records frequently do not cover all of the population of interest and may not collect some covariates that are important for accurate estimation. In a recent paper, the authors have described how to adjust for the incomplete coverage of administrative claims data and electronic health records at the state or local level. This article illustrates how to adjust and combine multiple data sets, namely, national surveys, state‐level surveys, claims data, and electronic health record data, to improve estimates of diabetes and prediabetes prevalence, along with the estimates of the method's accuracy. We demonstrate and validate the method using data from three jurisdictions (Alabama, California, and New York City). This method can be applied more generally to other areas and other data sources.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29931829</pmid><doi>10.1002/sim.7848</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1160-8364</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2018-11, Vol.37 (27), p.3975-3990
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2058502509
source Wiley-Blackwell Read & Publish Collection
subjects Big Data
composite estimation
Diabetes
HRS
MarketScan
Medical statistics
Morbidity
NAMCS
NHANES
prediabetes
title State‐level estimation of diabetes and prediabetes prevalence: Combining national and local survey data and clinical data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%E2%80%90level%20estimation%20of%20diabetes%20and%20prediabetes%20prevalence:%20Combining%20national%20and%20local%20survey%20data%20and%20clinical%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Marker,%20David%20A.&rft.date=2018-11-30&rft.volume=37&rft.issue=27&rft.spage=3975&rft.epage=3990&rft.pages=3975-3990&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7848&rft_dat=%3Cproquest_cross%3E2126267556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3498-9e86d7fc08f46c597f80726c005e105edb8f968c508cfb732c5a840ec55368a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126267556&rft_id=info:pmid/29931829&rfr_iscdi=true