Loading…
Impact of copper smelting on lakes in the southern Ural Mountains, Russia, inferred from chironomids
Karabash (52°2' N, 60°10' E) is a copper smelting town in the southern Ural Mountains of Russia. The town is affected by sulphur dioxide emissions and deposition of metal-rich particulates from the smelter, acid drainage from old mine workings, and leachates from disused waste dumps and ta...
Saved in:
Published in: | Journal of paleolimnology 2005-02, Vol.33 (2), p.229-241 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Karabash (52°2' N, 60°10' E) is a copper smelting town in the southern Ural Mountains of Russia. The town is affected by sulphur dioxide emissions and deposition of metal-rich particulates from the smelter, acid drainage from old mine workings, and leachates from disused waste dumps and tailings dams. The close proximity of houses to these sources of pollution is of concern to human health and has devastated terrestrial vegetation in the environs. The environmental impact of the smelter on lakes in the area has been assessed using chironomids. Short sediment cores were taken from 16 lakes within a 50 km radius of the smelter and the composition of the chironomid fauna from the bottom of each core, representing conditions prior to the commissioning of the smelter in 1910, was compared with the present chironomid fauna in the surface sediments. Redundancy analysis (RDA) showed that changes in the chironomid fauna of most lakes were driven by trophic change, independent of the industrial activity. Lakes and ponds adjacent to the smelter and waste dumps, which directly receive contaminated waters were devoid of macro- and mesofauna and flora, but there is no evidence that other lakes have been severely impacted by smelter emissions. Local geology ensures that the lakes are well-buffered to the effects of acid deposition which will limit the bioavailability of metals in the water column and sediment.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0921-2728 1573-0417 |
DOI: | 10.1007/s10933-004-3936-x |