Loading…

Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves

Prolonged hand‐transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the...

Full description

Saved in:
Bibliographic Details
Published in:Muscle & nerve 2009-06, Vol.39 (6), p.770-775
Main Authors: Loffredo, Michael A., Yan, Ji-Geng, Kao, Dennis, Zhang, Lin Ling, Matloub, Hani S., Riley, Danny A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3
cites cdi_FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3
container_end_page 775
container_issue 6
container_start_page 770
container_title Muscle & nerve
container_volume 39
creator Loffredo, Michael A.
Yan, Ji-Geng
Kao, Dennis
Zhang, Lin Ling
Matloub, Hani S.
Riley, Danny A.
description Prolonged hand‐transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the present study examined recovery of nerve conduction velocity and structural damage of myelinated axons in a rat tail vibration model. Both 7 and 14 days of vibration (4 h/day) decreased conduction velocity. The decrease correlated directly with the increased percentage of disrupted myelinated axons. The total number of myelinated axons was unchanged. During 2 months of recovery, conduction velocity returned to control level after 7‐day vibration but remained decreased after 14‐day vibration. The rat tail model provides insight into understanding the persistence of neural deficits in hand–arm vibration syndrome. Muscle Nerve, 2009
doi_str_mv 10.1002/mus.21235
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20647129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20647129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3</originalsourceid><addsrcrecordid>eNp10c9PFTEQB_DGaOSBHvwHTC-aeFjotLvt9miIgAhqVNBbM6-dNdX9ge0u8v579vEeePLSpu1nZpJvGXsBYh-EkAfdlPclSFU9YgsQ1hRlZevHbCGgrAut7I8dtpvzLyEE1No8ZTtgldBKqgVbfqaUYx6pH3miMPkxDj0fGu6H_v50Te3g47ji2AferaiNPY4UON7MjwE7_Ek8ziwu0939vPIRY8t7SteUn7EnDbaZnm_3PXZx9O7b4Ulx9un4_eHbs8KXUlZFhQS11warUgtUCsgq8LaB2ljytQ-NCUDaS6kV6VIjWq0FeRHUUpIPao-93vS9SsOfifLoupg9tS32NEzZSaFLA9LO8M0G-jTknKhxVyl2mFYOhFsH6ro1Xwc625fbptOyo_BPbhOcwastwOyxbRL2PuYHJ6ECAbae3cHG_Y0trf4_0Z1ffL0fXWwq1t9z81CB6bfTRpnKff947Kz4Yi5Pjy7dB3UL5C6dUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20647129</pqid></control><display><type>article</type><title>Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves</title><source>Wiley</source><creator>Loffredo, Michael A. ; Yan, Ji-Geng ; Kao, Dennis ; Zhang, Lin Ling ; Matloub, Hani S. ; Riley, Danny A.</creator><creatorcontrib>Loffredo, Michael A. ; Yan, Ji-Geng ; Kao, Dennis ; Zhang, Lin Ling ; Matloub, Hani S. ; Riley, Danny A.</creatorcontrib><description>Prolonged hand‐transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the present study examined recovery of nerve conduction velocity and structural damage of myelinated axons in a rat tail vibration model. Both 7 and 14 days of vibration (4 h/day) decreased conduction velocity. The decrease correlated directly with the increased percentage of disrupted myelinated axons. The total number of myelinated axons was unchanged. During 2 months of recovery, conduction velocity returned to control level after 7‐day vibration but remained decreased after 14‐day vibration. The rat tail model provides insight into understanding the persistence of neural deficits in hand–arm vibration syndrome. Muscle Nerve, 2009</description><identifier>ISSN: 0148-639X</identifier><identifier>EISSN: 1097-4598</identifier><identifier>DOI: 10.1002/mus.21235</identifier><identifier>PMID: 19306323</identifier><identifier>CODEN: MUNEDE</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; demyelination ; Disease Models, Animal ; Diseases of striated muscles. Neuromuscular diseases ; Electric Stimulation ; Electrodiagnosis ; hand-arm vibration syndrome ; Hand-Arm Vibration Syndrome - physiopathology ; Male ; Medical sciences ; nerve edema ; Nerve Fibers, Myelinated - pathology ; Nerve Fibers, Myelinated - physiology ; Neural Conduction - physiology ; Neurology ; occupational Raynaud disease ; peripheral nerve ; Peripheral Nerves - pathology ; Peripheral Nerves - physiopathology ; Rats ; Rats, Sprague-Dawley ; Reaction Time - physiology ; Tail - innervation ; Tail - physiopathology ; Time Factors ; Vibration - adverse effects ; Wallerian Degeneration - etiology ; Wallerian Degeneration - pathology ; Wallerian Degeneration - physiopathology</subject><ispartof>Muscle &amp; nerve, 2009-06, Vol.39 (6), p.770-775</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3</citedby><cites>FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21510198$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19306323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loffredo, Michael A.</creatorcontrib><creatorcontrib>Yan, Ji-Geng</creatorcontrib><creatorcontrib>Kao, Dennis</creatorcontrib><creatorcontrib>Zhang, Lin Ling</creatorcontrib><creatorcontrib>Matloub, Hani S.</creatorcontrib><creatorcontrib>Riley, Danny A.</creatorcontrib><title>Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves</title><title>Muscle &amp; nerve</title><addtitle>Muscle Nerve</addtitle><description>Prolonged hand‐transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the present study examined recovery of nerve conduction velocity and structural damage of myelinated axons in a rat tail vibration model. Both 7 and 14 days of vibration (4 h/day) decreased conduction velocity. The decrease correlated directly with the increased percentage of disrupted myelinated axons. The total number of myelinated axons was unchanged. During 2 months of recovery, conduction velocity returned to control level after 7‐day vibration but remained decreased after 14‐day vibration. The rat tail model provides insight into understanding the persistence of neural deficits in hand–arm vibration syndrome. Muscle Nerve, 2009</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>demyelination</subject><subject>Disease Models, Animal</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>Electric Stimulation</subject><subject>Electrodiagnosis</subject><subject>hand-arm vibration syndrome</subject><subject>Hand-Arm Vibration Syndrome - physiopathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>nerve edema</subject><subject>Nerve Fibers, Myelinated - pathology</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Neural Conduction - physiology</subject><subject>Neurology</subject><subject>occupational Raynaud disease</subject><subject>peripheral nerve</subject><subject>Peripheral Nerves - pathology</subject><subject>Peripheral Nerves - physiopathology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reaction Time - physiology</subject><subject>Tail - innervation</subject><subject>Tail - physiopathology</subject><subject>Time Factors</subject><subject>Vibration - adverse effects</subject><subject>Wallerian Degeneration - etiology</subject><subject>Wallerian Degeneration - pathology</subject><subject>Wallerian Degeneration - physiopathology</subject><issn>0148-639X</issn><issn>1097-4598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10c9PFTEQB_DGaOSBHvwHTC-aeFjotLvt9miIgAhqVNBbM6-dNdX9ge0u8v579vEeePLSpu1nZpJvGXsBYh-EkAfdlPclSFU9YgsQ1hRlZevHbCGgrAut7I8dtpvzLyEE1No8ZTtgldBKqgVbfqaUYx6pH3miMPkxDj0fGu6H_v50Te3g47ji2AferaiNPY4UON7MjwE7_Ek8ziwu0939vPIRY8t7SteUn7EnDbaZnm_3PXZx9O7b4Ulx9un4_eHbs8KXUlZFhQS11warUgtUCsgq8LaB2ljytQ-NCUDaS6kV6VIjWq0FeRHUUpIPao-93vS9SsOfifLoupg9tS32NEzZSaFLA9LO8M0G-jTknKhxVyl2mFYOhFsH6ro1Xwc625fbptOyo_BPbhOcwastwOyxbRL2PuYHJ6ECAbae3cHG_Y0trf4_0Z1ffL0fXWwq1t9z81CB6bfTRpnKff947Kz4Yi5Pjy7dB3UL5C6dUw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Loffredo, Michael A.</creator><creator>Yan, Ji-Geng</creator><creator>Kao, Dennis</creator><creator>Zhang, Lin Ling</creator><creator>Matloub, Hani S.</creator><creator>Riley, Danny A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200906</creationdate><title>Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves</title><author>Loffredo, Michael A. ; Yan, Ji-Geng ; Kao, Dennis ; Zhang, Lin Ling ; Matloub, Hani S. ; Riley, Danny A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>demyelination</topic><topic>Disease Models, Animal</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>Electric Stimulation</topic><topic>Electrodiagnosis</topic><topic>hand-arm vibration syndrome</topic><topic>Hand-Arm Vibration Syndrome - physiopathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>nerve edema</topic><topic>Nerve Fibers, Myelinated - pathology</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Neural Conduction - physiology</topic><topic>Neurology</topic><topic>occupational Raynaud disease</topic><topic>peripheral nerve</topic><topic>Peripheral Nerves - pathology</topic><topic>Peripheral Nerves - physiopathology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reaction Time - physiology</topic><topic>Tail - innervation</topic><topic>Tail - physiopathology</topic><topic>Time Factors</topic><topic>Vibration - adverse effects</topic><topic>Wallerian Degeneration - etiology</topic><topic>Wallerian Degeneration - pathology</topic><topic>Wallerian Degeneration - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loffredo, Michael A.</creatorcontrib><creatorcontrib>Yan, Ji-Geng</creatorcontrib><creatorcontrib>Kao, Dennis</creatorcontrib><creatorcontrib>Zhang, Lin Ling</creatorcontrib><creatorcontrib>Matloub, Hani S.</creatorcontrib><creatorcontrib>Riley, Danny A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Muscle &amp; nerve</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loffredo, Michael A.</au><au>Yan, Ji-Geng</au><au>Kao, Dennis</au><au>Zhang, Lin Ling</au><au>Matloub, Hani S.</au><au>Riley, Danny A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves</atitle><jtitle>Muscle &amp; nerve</jtitle><addtitle>Muscle Nerve</addtitle><date>2009-06</date><risdate>2009</risdate><volume>39</volume><issue>6</issue><spage>770</spage><epage>775</epage><pages>770-775</pages><issn>0148-639X</issn><eissn>1097-4598</eissn><coden>MUNEDE</coden><abstract>Prolonged hand‐transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the present study examined recovery of nerve conduction velocity and structural damage of myelinated axons in a rat tail vibration model. Both 7 and 14 days of vibration (4 h/day) decreased conduction velocity. The decrease correlated directly with the increased percentage of disrupted myelinated axons. The total number of myelinated axons was unchanged. During 2 months of recovery, conduction velocity returned to control level after 7‐day vibration but remained decreased after 14‐day vibration. The rat tail model provides insight into understanding the persistence of neural deficits in hand–arm vibration syndrome. Muscle Nerve, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19306323</pmid><doi>10.1002/mus.21235</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-639X
ispartof Muscle & nerve, 2009-06, Vol.39 (6), p.770-775
issn 0148-639X
1097-4598
language eng
recordid cdi_proquest_miscellaneous_20647129
source Wiley
subjects Animals
Biological and medical sciences
demyelination
Disease Models, Animal
Diseases of striated muscles. Neuromuscular diseases
Electric Stimulation
Electrodiagnosis
hand-arm vibration syndrome
Hand-Arm Vibration Syndrome - physiopathology
Male
Medical sciences
nerve edema
Nerve Fibers, Myelinated - pathology
Nerve Fibers, Myelinated - physiology
Neural Conduction - physiology
Neurology
occupational Raynaud disease
peripheral nerve
Peripheral Nerves - pathology
Peripheral Nerves - physiopathology
Rats
Rats, Sprague-Dawley
Reaction Time - physiology
Tail - innervation
Tail - physiopathology
Time Factors
Vibration - adverse effects
Wallerian Degeneration - etiology
Wallerian Degeneration - pathology
Wallerian Degeneration - physiopathology
title Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20reduction%20of%20conduction%20velocity%20and%20myelinated%20axon%20damage%20in%20vibrated%20rat%20tail%20nerves&rft.jtitle=Muscle%20&%20nerve&rft.au=Loffredo,%20Michael%20A.&rft.date=2009-06&rft.volume=39&rft.issue=6&rft.spage=770&rft.epage=775&rft.pages=770-775&rft.issn=0148-639X&rft.eissn=1097-4598&rft.coden=MUNEDE&rft_id=info:doi/10.1002/mus.21235&rft_dat=%3Cproquest_cross%3E20647129%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4225-5ae18c67a5460a331e931c9f1879ec8cdf7d1e6c2263e646aa9660ec0d3b2ecd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20647129&rft_id=info:pmid/19306323&rfr_iscdi=true