Loading…

Dissipation and sorption of six commonly used pesticides in two contrasting soils of New Zealand

We investigated dissipation and sorption of atrazine, terbuthylazine, bromacil, diazinon, hexazinone and procymidone in two contrasting New Zealand soils (0-10 cm and 40-50 cm) under controlled laboratory conditions. The six pesticides showed marked differences in their degradation rates in both top...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes Pesticides, food contaminants, and agricultural wastes, 2009-05, Vol.44 (4), p.325-336
Main Authors: Sarmah, Ajit K, Close, Murray E, Mason, Norman W.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated dissipation and sorption of atrazine, terbuthylazine, bromacil, diazinon, hexazinone and procymidone in two contrasting New Zealand soils (0-10 cm and 40-50 cm) under controlled laboratory conditions. The six pesticides showed marked differences in their degradation rates in both top- and subsoils, and the estimated DT 50 values for the compounds were: 19-120 (atrazine), 10-36 (terbuthylazine), 12-46 (bromacil), 7-25 (diazinon), 8-92 (hexazinone) and 13-60 days for procymidone. Diazinon had the lowest range for DT 50 values, while bromacil and hexazinone gave the highest DT 50 values under any given condition on any soil type. Batch derived effective distribution coefficient (K d eff ) values for the pesticides varied markedly with bromacil and hexazinone exhibiting low sorption affinity for the soils at either depth, while diazinon gave high sorption values. Comparison of pesticide degradation in sterile and non-sterile soils suggests that microbial degradation was the major dissipation pathway for all six compounds, although little influence of abiotic degradation was noticeable for diazinon and procymidone.
ISSN:0360-1234
1532-4109
DOI:10.1080/03601230902800960