Loading…

NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine

Riboswitches are structured RNA elements in the 5′-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to eith...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecular NMR assignments 2018-10, Vol.12 (2), p.329-334
Main Authors: Weickhmann, A. Katharina, Keller, Heiko, Duchardt-Ferner, Elke, Strebitzer, Elisabeth, Juen, Michael A., Kremser, Johannes, Wurm, Jan Philip, Kreutz, Christoph, Wöhnert, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Riboswitches are structured RNA elements in the 5′-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches—the so-called SAM/SAH riboswitch class—binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.
ISSN:1874-2718
1874-270X
DOI:10.1007/s12104-018-9834-3