Loading…
Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry
Radium isotopes ( 223Ra, 224Ra, 226Ra, and 228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified...
Saved in:
Published in: | Marine chemistry 2008-04, Vol.109 (3), p.377-394 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radium isotopes (
223Ra,
224Ra,
226Ra, and
228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified and extensively sampled for nutrient concentrations. However, a second type of groundwater discharging into the lagoon was detected during this study using radium isotope activity measurements. This second type of groundwater is characterized by moderate salinities (within the range of lagoon salinities) and very elevated radium activities in comparison to the low salinity groundwater, mixed lagoon water, and seawater. Further analysis showed that the two types of groundwater also have distinct chloride, strontium, and sulfate ratios, along with slightly different nutrient concentrations. Groundwater discharge occurs through large and small springs scattered throughout the lagoon, and both types of groundwater were detected discharging from one of the larger springs. The relative proportions of low salinity groundwater and brackish high radium groundwater varied over the tidal cycle. In order to better understand the relative contributions of each type of groundwater to the lagoon, a three end-member mixing model based on the distinct chemical and isotopic compositions of both types of groundwater and of seawater was used to estimate the distribution of each water type throughout the lagoon in different seasons. This study suggests that substantial groundwater discharge to the lagoon can occur during both dry and rainy seasons. The presence of two groundwater sources has implications for monitoring and protection of the Celestún Lagoon Biosphere Reserve, since the two sources may have different susceptibilities to anthropogenic contamination depending on their respective recharge area and recharge rates. |
---|---|
ISSN: | 0304-4203 1872-7581 |
DOI: | 10.1016/j.marchem.2007.07.010 |