Loading…

OPTIS – A Satellite test of Special and General Relativity

OPTIS has been proposed as a small satellite platform in a high elliptical orbit (apogee 40,000 km, perigee 10,000 km) and is designed for high precision tests of foundations of Special and General Relativity. The experimental set-up consists of two ultrastable Nd:YAG lasers, three crossed optical r...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2007, Vol.39 (2), p.230-235
Main Authors: Dittus, H., Lämmerzahl, C., Peters, A., Schiller, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:OPTIS has been proposed as a small satellite platform in a high elliptical orbit (apogee 40,000 km, perigee 10,000 km) and is designed for high precision tests of foundations of Special and General Relativity. The experimental set-up consists of two ultrastable Nd:YAG lasers, three crossed optical resonators (monolithic cavities), an ensemble of atomic clocks, an optical comb generator, laser tracking devices and a drag-free control system. OPTIS enables improved tests of (1) the isotropy and (2) constancy of the speed of light, (3) special relativistic time dilation, (4) the universality of the gravitational redshift by comparison of various clocks, can measure (5) the absolute value of the gravitational redshift, (6) the Lense–Thirring effect and (7) the perigee advance and (8) can make a test of a hypothetical Yukawa part in the gravitational potential. To avoid any influence from atmospheric drag, solar radiation, or Earth albedo, the satellite needs drag-free control to depress the residual acceleration down to 10 −14 m/s 2 in the frequency range between 10 −2 and 10 −3 Hz. Precise thermal control must be used to stabilize the cavity temperature to within one part in 10 7 at time scales of 100 s and to one part in 10 5 on the orbit time scale.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2007.02.074