Loading…
Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice
Heat shock proteins (Hsps) are molecular chaperons, which function in protein folding and assembly, protein intracellular localization and secretion, and degradation of misfolded and truncated proteins. Heat shock factors (Hsfs) are the transcriptional activators of Hsps. It has been reported that H...
Saved in:
Published in: | Plant science (Limerick) 2009-04, Vol.176 (4), p.583-590 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heat shock proteins (Hsps) are molecular chaperons, which function in protein folding and assembly, protein intracellular localization and secretion, and degradation of misfolded and truncated proteins. Heat shock factors (Hsfs) are the transcriptional activators of Hsps. It has been reported that Hsps and Hsfs are widely involved in response to various abiotic stresses such as heat, drought, salinity and cold. To elucidate the function and regulation of rice Hsp and Hsf genes, we examined a global expression profiling with heat stressed rice seedling, and then compared our results with the previous rice data under cold, drought and salt stresses. The comparison revealed that, while most Hsfs and Hsps had highly similar and overlapped response and regulation patterns under different stresses, some of those genes showed significantly specific response to distinct stress. We also found that heat-responsive gene profiling differed largely from those under cold/drought/salt stresses, and that drought treatment was more effective to up-regulate Hsf expression in rice than in Arabidopsis. Overall, our data suggests that Hsps and Hsfs might be important elements in cross-talk of different stress signal transduction networks. |
---|---|
ISSN: | 0168-9452 1873-2259 |
DOI: | 10.1016/j.plantsci.2009.01.016 |