Loading…
Iron oxidation dynamics vs. temperature of synthetic potassic-ferro-richterite: a XANES investigation
We investigated the oxidation behaviour of a synthetic potassic-ferro-richterite up to 750 °C by using simultaneous X-ray absorption spectroscopy and X-ray diffraction experiments with synchrotron radiation. From the X-ray diffraction results, we observed an abrupt decrease of cell dimensions at ∼33...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2018-01, Vol.20 (33), p.21764-21771 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the oxidation behaviour of a synthetic potassic-ferro-richterite up to 750 °C by using simultaneous X-ray absorption spectroscopy and X-ray diffraction experiments with synchrotron radiation. From the X-ray diffraction results, we observed an abrupt decrease of cell dimensions at ∼335 °C accompanied by an anomalous increase in the monoclinic cell angle β. From the analysis of the XANES spectra at the iron K-edge, we observed that the structural shrinkage is due to the iron oxidation process, coupled to hydrogen loss, occurring at ∼315 °C, slightly before the cell contraction. Combining these results with previous studies performed on similar samples by single-crystal structure refinement, Mössbauer, high temperature-Fourier transform IR and Raman spectroscopies, we show that the temperature evolution in Fe-amphiboles is a multi-step process. Following the iron oxidation driven by temperature, the structural dynamics in this double-chain silicate is ruled by local strains in the ribbon of iron-filled octahedra, mainly due to the contraction of the M(1) site. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c8cp04249g |