Loading…
Segmentation of Brain MR Images Using a Charged Fluid Model
In this paper, we developed a new deformable model, the charged fluid model (CFM), that uses the simulation of a charged fluid to segment anatomic structures in magnetic resonance (MR) images of the brain. Conceptually, the charged fluid behaves like a liquid such that it flows through and around di...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2007-10, Vol.54 (10), p.1798-1813 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we developed a new deformable model, the charged fluid model (CFM), that uses the simulation of a charged fluid to segment anatomic structures in magnetic resonance (MR) images of the brain. Conceptually, the charged fluid behaves like a liquid such that it flows through and around different obstacles. The simulation evolves in two steps governed by Poisson's equation. The first step distributes the elements of the charged fluid within the propagating interface until an electrostatic equilibrium is achieved. The second step advances the propagating front of the charged fluid such that it deforms into a new shape in response to the image gradient. This approach required no prior knowledge of anatomic structures, required the use of only one parameter, and provided subpixel precision in the region of interest. We demonstrated the performance of this new algorithm in the segmentation of anatomic structures on simulated and real brain MR images of different subjects. The CFM was compared to the level-set-based methods [Caselles et al. (1993) and Malladi etal. (1995)] in segmenting difficult objects in a variety of brain MR images. The experimental results in different types of MR images indicate that the CFM algorithm achieves good segmentation results and is of potential value in brain image processing applications. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2007.895104 |