Loading…
Relationship Between Central Venous Catheter Protein Adsorption and Water Infused Surface Protection Mechanisms
Central venous catheters (CVCs) are implanted in the majority of dialysis patients despite increased patient risk due to thrombotic occlusion and biofilm formation. Current solutions remain ineffective at preventing these complications and treatment options are limited and often harmful. We present...
Saved in:
Published in: | Artificial organs 2018-11, Vol.42 (11), p.E369-E379 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Central venous catheters (CVCs) are implanted in the majority of dialysis patients despite increased patient risk due to thrombotic occlusion and biofilm formation. Current solutions remain ineffective at preventing these complications and treatment options are limited and often harmful. We present further analysis of the previously proposed water infused surface protection (WISP) technology, an active method to reduce protein adsorption and effectively disrupt adsorbed protein sheaths on the inner surface of CVCs. A WISP CVC is modeled by a hollow fiber membrane (HFM) in a benchtop device which continuously infuses a saline solution across the membrane wall into the blood flow, creating a blood‐free boundary layer at the lumen surface. Total protein adsorption is measured under various experimental conditions to further test WISP performance. The WISP device shows reduced protein adsorption as blood and WISP flow rates increase (P |
---|---|
ISSN: | 0160-564X 1525-1594 |
DOI: | 10.1111/aor.13274 |