Loading…

Screening for ENU-Induced Mutations in Mice That Result in Aberrant Ethanol-Related Phenotypes

One way to investigate the genetic underpinnings of ethanol-related phenotypes is to create random mutations and screen the mutagenized mice for their behavioral phenotypes. The purposes of this article are to assess the efficacy of a novel high throughput screen to detect known strain differences a...

Full description

Saved in:
Bibliographic Details
Published in:Behavioral neuroscience 2007-08, Vol.121 (4), p.665-678
Main Authors: Hamre, Kristin M, Goldowitz, Daniel, Wilkinson, Sarah, Matthews, Douglas B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One way to investigate the genetic underpinnings of ethanol-related phenotypes is to create random mutations and screen the mutagenized mice for their behavioral phenotypes. The purposes of this article are to assess the efficacy of a novel high throughput screen to detect known strain differences and to provide evidence of the ability of this screen to detect phenodeviants, as illustrated by two new lines of mutant mice. All mice were tested for the following phenotypes after a dose of 2.25 g/kg of ethanol: ataxia, anxiolytic response, locomotor activity, core body temperature, and blood ethanol concentration, as well as ethanol consumption based on a two-bottle choice test. The authors obtained several baseline measures that allowed for the detection of phenodeviants on these measures as well. To validate this screen, A/J, DBA/2J, and C57BL/6J mouse strains were tested, and previously reported strain differences were found in all phenotypes except ethanol-induced hypothermia. Additionally, two mutant pedigrees were identified: 7TNJ, which exhibited abnormal ethanol-induced locomotor activity, and 112TNR, which exhibited an enhanced ability on the rotarod. These data demonstrate the efficacy of this screen to detect known as well as novel phenotypic differences.
ISSN:0735-7044
1939-0084
DOI:10.1037/0735-7044.121.4.665