Loading…
Retinotopic Separation of Nasal and Temporal Motion Selectivity in the Mouse Superior Colliculus
Sensory neurons often display an ordered spatial arrangement that enhances the encoding of specific features on different sides of natural borders in the visual field (for example, [1–3]). In central visual areas, one prominent natural border is formed by the confluence of information from the two e...
Saved in:
Published in: | Current biology 2018-09, Vol.28 (18), p.2961-2969.e4 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sensory neurons often display an ordered spatial arrangement that enhances the encoding of specific features on different sides of natural borders in the visual field (for example, [1–3]). In central visual areas, one prominent natural border is formed by the confluence of information from the two eyes, the monocular-binocular border [4]. Here, we investigate whether receptive field properties of neurons in the mouse superior colliculus show any systematic organization about the monocular-binocular border. The superior colliculus is a layered midbrain structure that plays a significant role in the orienting responses of the eye, head, and body [5]. Its superficial layers receive direct input from the majority of retinal ganglion cells and are retinotopically organized [6, 7]. Using two-photon calcium imaging, we recorded the activity of collicular neurons from the superficial layers of awake mice and determined their direction selectivity, orientation selectivity, and retinotopic location. This revealed that nearby direction-selective neurons have a strong tendency to prefer the same motion direction. In retinotopic space, the local preference of direction-selective neurons shows a sharp transition in the preference for nasal versus temporal motion at the monocular-binocular border. The maps representing orientation and direction appear to be independent. These results illustrate the important coherence between the spatial organization of inputs and response properties within the visual system and suggest a re-analysis of the receptive field organization within the superior colliculus from an ecological perspective.
•DS neurons form local patches with a single direction preference•The preferred angle of DS neurons transitions at the monocular-binocular border•DS and OS maps are independent of each other
In central visual areas, the monocular-binocular border is formed by the confluence of information from the two eyes. de Malmazet et al. demonstrate, using two-photon calcium imaging in awake mice, that direction-selective neurons in the superior colliculus show a sharp transition in their preference for nasal versus temporal motion at this border. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2018.07.001 |