Loading…

Effects of ompA Deletion on Expression of Type 1 Fimbriae in Escherichia coli K1 Strain RS218 and on the Association of E. coli with Human Brain Microvascular Endothelial Cells

We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 b...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 2006-10, Vol.74 (10), p.5609-5616
Main Authors: Teng, Ching-Hao, Xie, Yi, Shin, Sooan, Di Cello, Francescopaolo, Paul-Satyaseela, Maneesh, Cai, Mian, Kim, Kwang Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.00321-06