Loading…
Three-Way Error Analysis between AATSR, AMSR-E, and In Situ Sea Surface Temperature Observations
Using collocations of three different observation types of sea surface temperatures (SSTs) gives enough information to enable the standard deviation of error on each observation type to be derived. SSTs derived from the Advanced Along-Track Scanning Radiometer (AATSR) and Advanced Microwave Scanning...
Saved in:
Published in: | Journal of atmospheric and oceanic technology 2008-07, Vol.25 (7), p.1197-1207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using collocations of three different observation types of sea surface temperatures (SSTs) gives enough information to enable the standard deviation of error on each observation type to be derived. SSTs derived from the Advanced Along-Track Scanning Radiometer (AATSR) and Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) instruments are used, along with SST observations from buoys. Various assumptions are made within the error theory, including that the errors are not correlated, which should be the case for three independent data sources. An attempt is made to show that this assumption is valid and that the covariances between the different observations because of representativity error are negligible. Overall, the spatially averaged nighttime AATSR dual-view three-channel bulk SST observations for 2003 are shown to have a very small standard deviation of error of 0.16 K, whereas the buoy SSTs have an error of 0.23 K and the AMSR-E SST observations have an error of 0.42 K. |
---|---|
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/2007JTECHO542.1 |