Loading…

Urban Dispersion Modeling: Comparison with Single-Building Measurements

Two models have been developed to predict airflow and dispersion in urban environments. The first model, the Realistic Urban Spread and Transport of Intrusive Contaminants (RUSTIC) model, is a fast-running urban airflow code that rapidly converges to a numerical solution of a modified set of the com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology (1988) 2007-12, Vol.46 (12), p.2180-2191
Main Authors: Diehl, Steve R., Burrows, Donald A., Hendricks, Eric A., Keith, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two models have been developed to predict airflow and dispersion in urban environments. The first model, the Realistic Urban Spread and Transport of Intrusive Contaminants (RUSTIC) model, is a fast-running urban airflow code that rapidly converges to a numerical solution of a modified set of the compressible Navier–Stokes equations. RUSTIC uses the k–ω turbulence model with a buoyancy production term to handle atmospheric stability effects. The second model, “MESO,” is a Lagrangian particle transport and dispersion code that predicts concentrations of a released chemical or biological agent in urban or rural areas. As a preliminary validation of the models, concentrations simulated by MESO are compared with experimental data from wind-tunnel testing of dispersion around both a multistory rectangular building and a single-story L-shaped building. For the rectangular building, trace gas is forced out at the base of the downwind side, whereas for the L-shaped building, trace gas is forced out of a side door in the inner corner of the “L.” The MESO–RUSTIC combination is set up with the initial conditions of the wind-tunnel experiment, and the steady-state concentrations simulated by the models are compared with the wind-tunnel data. For the multistory building, a dense set of detector locations was available downwind at ground level. For the L-shaped building, concentration data were available at three heights in a lateral plane at a distance of one building height downwind of the lee side. A favorable comparison between model simulations and test data is shown for both buildings.
ISSN:1558-8424
0894-8763
1558-8432
1520-0450
DOI:10.1175/2006JAMC1300.1