Loading…
Effect of Different Tensoactives on the Morphology and Release Kinetics of PLA-b-PEG Microcapsules Loaded With the Natural Anticancer Compound Perillyl Alcohol
Perillyl alcohol is a natural compound that has attracted a significant interest due to its potent antitumor activity. However, clinical trials have exhibited poor tolerance by oral administration, mainly due to gastrointestinal side effects. We propose the entrapment of perillyl alcohol into poly(D...
Saved in:
Published in: | Journal of pharmaceutical sciences 2019-02, Vol.108 (2), p.860-869 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perillyl alcohol is a natural compound that has attracted a significant interest due to its potent antitumor activity. However, clinical trials have exhibited poor tolerance by oral administration, mainly due to gastrointestinal side effects. We propose the entrapment of perillyl alcohol into poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG) as delivery platform (entrapment efficiency of 63%-68%). The influence of different concentrations of the tensoactives poly(vinyl alcohol) and sodium cholate (SC) on shear strength and morphology was evaluated by confocal laser scanning microscopy and interfacial tension studies. Only the microcapsules formulated with SC maintained their sphericity when submitted to shear stress. These results indicate that the interface is better organized with SC, conferring mutual stacked packing that is able to better stabilize the organic drop. The in vitro release profile of the drug from the microcapsules was correlated with pore formation and polymer degradation, best fitted to the Baker-Lonsdale model. The loaded microcapsules showed an IC50 equivalent to that of the free drug (80 μg/mL) after 72 h of exposure. However, after 24 h of exposure, loaded microcapsules showed an IC50 almost two-fold higher (220 μg/mL) suggesting gradual release. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2018.09.003 |