Loading…
Leptin and insulin do not exert redundant control of metabolic or emotive function via dopamine neurons
Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors fo...
Saved in:
Published in: | Hormones and behavior 2018-11, Vol.106, p.93-104 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors for leptin (Lepr) and insulin (Insr). Leptin-dopamine signaling reduces running reward and homecage activity. However, dopamine-specific deletion of Lepr does not affect body weight or food intake in mice. We hypothesized insulin-dopamine signaling might compensate for disrupted leptin-dopamine signaling. To investigate the degree to which insulin and leptin exert overlapping (i.e. redundant) versus discrete control over dopamine neurons, we generated transgenic male and female mice exhibiting dopamine-specific deletion of either Lepr (Lepr KO), Insr (Insr KO) or both Lepr and Insr (Dbl KO) and assessed their feeding behavior, voluntary activity, and energy expenditure compared to control mice. No differences in body weight, daily food intake, energy expenditure or hyperphagic feeding of palatable chow were observed between Lepr, Insr or Dbl KO mice and control mice. However, consistent with previous findings, Lepr KO (but not Insr or Dbl KO) male mice exhibited significantly increased running wheel activity compared to controls. These data demonstrate that insulin and leptin do not exert redundant control of dopamine neuron-mediated modulation of energy balance. Furthermore, our results indicate neither leptin nor insulin plays a critical role in the modulation of dopamine neurons regarding hedonic feeding behavior or anxiety-related behavior.
•Leptin and insulin do not exert redundant control over dopamine neurons.•Direct leptin-dopamine signaling suppresses voluntary running behavior in mice.•Leptin signaling via dopamine neurons is not required for normal feeding behavior.•Dopamine-specific insulin receptor knockout mice do not exhibit a phenotype. |
---|---|
ISSN: | 0018-506X 1095-6867 |
DOI: | 10.1016/j.yhbeh.2018.10.001 |