Loading…

Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes

The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In princip...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-01, Vol.31 (2), p.e1805334-n/a
Main Authors: Huang, Gang, Han, Jiuhui, Zhang, Fan, Wang, Ziqian, Kashani, Hamzeh, Watanabe, Kentaro, Chen, Mingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries. A lithium composite anode is developed by rational combination of 3D nanoporous N‐doped graphene and Li melt. The issues of uncontrolled dendrite growth and infinite volume changes of Li‐metal anodes are simultaneously addressed by the integrated nanoporous Li anode, realizing high cycling stability and ultrafast rate performance at high area capacities.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201805334