Loading…

Effects of ethanol on pancreatic beta-cell death: interaction with glucose and fatty acids

Western lifestyle plays an important role in the prevalence of type 2 diabetes by causing insulin resistance and pancreatic β-cell dysfunction, a prerequisite for the development of diabetes. High fat diet and alcohol are major components of the western diet. The aim of the present study was to inve...

Full description

Saved in:
Bibliographic Details
Published in:Cell biology and toxicology 2009-04, Vol.25 (2), p.141-152
Main Authors: Dembele, Korami, Nguyen, K. Hoa, Hernandez, Tiffany A., Nyomba, B. L. Grégoire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Western lifestyle plays an important role in the prevalence of type 2 diabetes by causing insulin resistance and pancreatic β-cell dysfunction, a prerequisite for the development of diabetes. High fat diet and alcohol are major components of the western diet. The aim of the present study was to investigate the effects of ethanol and fatty acids on β-cell survival and metabolism. We treated the rat β-cell line RINm5F with ethanol, a mixture of palmitic and oleic acids, or both. Reactive oxygen species (ROS) were determined by (5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate) (CM-H2DCFDA) fluorescence assay, and mitochondrial activity was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction assay and by determining ATP production. Cell viability was assessed with a cell counter and trypan blue exclusion, and the mode of cell death by Hoechst33342 and propidium iodide staining. With both ethanol and fatty acid treatments, MTT reduction and ATP production decreased, whereas ROS production increased. Ethanol treatment had no effect on cell number, whereas fatty acid treatment reduced the cell number. Cell incubation with ethanol, fatty acids, or both increased the number of Hoechst 33342-positive nuclei. However, the majority of nuclei from fatty acid-treated cells were stained with propidium iodide, indicating a loss of plasma membrane integrity. We conclude that both ethanol and fatty acids generate cellular oxidative stress, and affect mitochondrial function in RINm5F β-cells. However, ethanol causes β-cell death by apoptosis, whereas fatty acids cause cell death predominantly by necrosis. It is not known whether these results are applicable to human β-cells.
ISSN:0742-2091
1573-6822
DOI:10.1007/s10565-008-9067-9