Loading…
Differential regional infarction, neuronal loss and gliosis in the gerbil cerebral hemisphere following 30 min of unilateral common carotid artery occlusion
The degree of transient ischemic damage in the cerebral hemisphere is different according to duration of transient ischemia and cerebral regions. Mongolian gerbils show various lesions in the hemisphere after transient unilateral occlusion of the common carotid artery (UOCCA) because they have diffe...
Saved in:
Published in: | Metabolic brain disease 2019-02, Vol.34 (1), p.223-233 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The degree of transient ischemic damage in the cerebral hemisphere is different according to duration of transient ischemia and cerebral regions. Mongolian gerbils show various lesions in the hemisphere after transient unilateral occlusion of the common carotid artery (UOCCA) because they have different types of patterns of anterior and posterior communicating arteries. We examined differential regional damage in the ipsilateral hemisphere of the gerbil after 30 min of UOCCA by using 2,3,5-triphenyltetrazolium chloride (TTC) staining, cresyl violet (CV) Nissl staining, Fluoro-Jade B (F-J B) fluorescence staining, and NeuN immunohistochemistry 5 days after UOCCA. In addition, regional differences in reactions of astrocytes and microglia were examined using GFAP and Iba-1 immunohistochemistry. After right UOCCA, neurological signs were assessed to define ischemic symptomatic animals. Moderate symptomatic gerbils showed several infarcts, while mild symptomatic gerbils showed selective neuronal death/loss in the primary motor and sensory cortex, striatum, thalamus, and hippocampus 5 days after UOCCA. In the areas, morphologically changed GFAP immunoreactive astrocytes and Iba-1 immunoreactive microglia were found, and their numbers were increased or decreased according to the damaged areas. In brief, our results demonstrate that 30 min of UOCCA in gerbils produced infarcts or selective neuronal death depending on ischemic severity in the ipsilateral cerebral cortex, striatum, thalamus and hippocampus, showing that astrocytes and microglia were differently reacted 5 days after UOCCA. Taken together, a gerbil model of 30 min of UOCCA can be used to study mechanisms of infarction and/or regional selective neuronal death/loss as well as neurological dysfunction following UOCCA. |
---|---|
ISSN: | 0885-7490 1573-7365 |
DOI: | 10.1007/s11011-018-0345-9 |