Loading…
A neural network approach to identifying non-point sources of microbial contamination
Commonly measured fecal bacteria concentrations in water and rainfall data were utilized as inputs for training a neural network model to distinguish between urban and agricultural fecal contamination present in inputs to a drinking water reservoir. Seven sites were selected that represented differi...
Saved in:
Published in: | Water research (Oxford) 1999, Vol.33 (14), p.3099-3106 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Commonly measured fecal bacteria concentrations in water and rainfall data were utilized as inputs for training a neural network model to distinguish between urban and agricultural fecal contamination present in inputs to a drinking water reservoir. Seven sites were selected that represented differing degrees of fecal contamination arising from agricultural, urban, or a blend of both land use activities. The absence of human sewage at the inlet sites to the reservoir was determined by analysis for coprostannol and serotyping of male-specific coliphage. Analyses for fecal coliform (FC), fecal streptococci (FS), total coliform (TC) and coliphage were conducted over 2
years from weekly samples collected from these sites during dry and rainy times during warm seasons. The average concentrations of microorganisms measured were highly variable and analysis of FC/FS ratios was not able to differentiate between urban or agriculturally impacted sites. A neural network model was written that used bacterial and weather data to differentiate between three site classifications: urban, agricultural and a mixture of these. The validity of the source identification, neural network model was verified through case study. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/S0043-1354(99)00025-1 |