Loading…

Development of an anti-hepatitis B virus (HBV) agent through the structure-activity relationship of the interferon-like small compound CDM-3008

[Display omitted] Hepatitis B, a viral infectious disease caused by hepatitis B virus (HBV), is a life-threatening disease that leads liver cirrhosis and liver cancer. Because the current treatments for HBV, such as an interferon (IFN) formulation or nucleoside/nucleotide analogues, are not sufficie...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry 2019-02, Vol.27 (3), p.470-478
Main Authors: Takahashi, Nobuaki, Hayashi, Kyohei, Nakagawa, Yusuke, Furutani, Yutaka, Toguchi, Mariko, Shiozaki-Sato, Yumi, Sudoh, Masayuki, Kojima, Soichi, Kakeya, Hideaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Hepatitis B, a viral infectious disease caused by hepatitis B virus (HBV), is a life-threatening disease that leads liver cirrhosis and liver cancer. Because the current treatments for HBV, such as an interferon (IFN) formulation or nucleoside/nucleotide analogues, are not sufficient, the development of a more effective agent for HBV is urgent required. CDM-3008 (1, 2-(2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridin-8-yl)-1,3,4-oxadiazole) (RO8191)) is a small molecule with an imidazo[1,2-a][1,8]naphthyridine scaffold that shows anti-HCV activity with an IFN-like effect. Here, we report that 1 was also effective for HBV, although the solubility and metabolic stability were insufficient for clinical use. Through the structure-activity relationship (SAR), we discovered that CDM-3032 (11, N-(piperidine-4-yl)-2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridine-8-carboxamide hydrochloride) was more soluble than 1 (>30 mg/mL for 11 versus 0.92 mg/mL for 1). In addition, the half-life period of 11 was dramatically improved in both mouse and human hepatic microsomes (T1/2, >120 min versus 58.2 min in mouse, and >120 min versus 34.1 min in human, for 11 and 1, respectively).
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2018.11.039