Loading…

Improving Coarse-Grained Protein Force Fields with Small-Angle X‑ray Scattering Data

Small-angle X-ray scattering (SAXS) experiments provide valuable structural data for biomolecules in solution. We develop a highly efficient maximum entropy approach to fit SAXS data by introducing minimal biases to a coarse-grained protein force field, the associative memory, water mediated, struct...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2019-02, Vol.123 (5), p.1026-1034
Main Authors: Latham, Andrew P, Zhang, Bin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small-angle X-ray scattering (SAXS) experiments provide valuable structural data for biomolecules in solution. We develop a highly efficient maximum entropy approach to fit SAXS data by introducing minimal biases to a coarse-grained protein force field, the associative memory, water mediated, structure, and energy model (AWSEM). We demonstrate that the resulting force field, AWSEM-SAXS, succeeds in reproducing scattering profiles and models protein structures with shapes that are in much better agreement with experimental results. Quantitative metrics further reveal a modest, but consistent, improvement in the accuracy of modeled structures when SAXS data are incorporated into the force field. Additionally, when applied to a multiconformational protein, we find that AWSEM-SAXS is able to recover the population of different protein conformations from SAXS data alone. We, therefore, conclude that the maximum entropy approach is effective in fine-tuning the force field to better characterize both protein structure and conformational fluctuation.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.8b10336