Loading…
Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene
Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapi...
Saved in:
Published in: | ACS applied materials & interfaces 2019-02, Vol.11 (6), p.6166-6173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883 |
container_end_page | 6173 |
container_issue | 6 |
container_start_page | 6166 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Dosi, Manan Lau, Irene Zhuang, Yichen Simakov, David S. A Fowler, Michael W Pope, Michael A |
description | Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases. |
doi_str_mv | 10.1021/acsami.8b22310 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179387227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179387227</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRbK1ePUqOIqTuRz42Ry21FioKteew2X2hKZts3E2E_vduSdubp_cGfjMwg9A9wVOCKXkW0om6mvKCUkbwBRqTLIpCTmN6ef6jaIRunNthnDCK42s0YjiJOE_4GLUb3VnhoHFVV_1CMNcgO2vkFupKCh18QLcVDQRrTxjrglfPqsA0wdroSgVfRu9rsCeb3ncQLpuyP0Arj1qvVC-9WljRbqGBW3RVCu3g7ngnaPM2_569h6vPxXL2sgoFY7gLaSIJSynLEp7EKSGZ4oWSmYBEFZJGDOM4K0qZSSWLgivOyjjDJY8glqqMOWcT9Djkttb89OC6vK6cBK19G9O7nJI0YzylNPXodEClNc5ZKPPWVrWw-5zg_LByPqycH1f2hodjdl_UoM74aVYPPA2AN-Y709vGV_0v7Q9U0oki</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179387227</pqid></control><display><type>article</type><title>Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dosi, Manan ; Lau, Irene ; Zhuang, Yichen ; Simakov, David S. A ; Fowler, Michael W ; Pope, Michael A</creator><creatorcontrib>Dosi, Manan ; Lau, Irene ; Zhuang, Yichen ; Simakov, David S. A ; Fowler, Michael W ; Pope, Michael A</creatorcontrib><description>Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b22310</identifier><identifier>PMID: 30648868</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2019-02, Vol.11 (6), p.6166-6173</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883</citedby><cites>FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883</cites><orcidid>0000-0002-5793-3392 ; 0000-0002-9761-0336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30648868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dosi, Manan</creatorcontrib><creatorcontrib>Lau, Irene</creatorcontrib><creatorcontrib>Zhuang, Yichen</creatorcontrib><creatorcontrib>Simakov, David S. A</creatorcontrib><creatorcontrib>Fowler, Michael W</creatorcontrib><creatorcontrib>Pope, Michael A</creatorcontrib><title>Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRbK1ePUqOIqTuRz42Ry21FioKteew2X2hKZts3E2E_vduSdubp_cGfjMwg9A9wVOCKXkW0om6mvKCUkbwBRqTLIpCTmN6ef6jaIRunNthnDCK42s0YjiJOE_4GLUb3VnhoHFVV_1CMNcgO2vkFupKCh18QLcVDQRrTxjrglfPqsA0wdroSgVfRu9rsCeb3ncQLpuyP0Arj1qvVC-9WljRbqGBW3RVCu3g7ngnaPM2_569h6vPxXL2sgoFY7gLaSIJSynLEp7EKSGZ4oWSmYBEFZJGDOM4K0qZSSWLgivOyjjDJY8glqqMOWcT9Djkttb89OC6vK6cBK19G9O7nJI0YzylNPXodEClNc5ZKPPWVrWw-5zg_LByPqycH1f2hodjdl_UoM74aVYPPA2AN-Y709vGV_0v7Q9U0oki</recordid><startdate>20190213</startdate><enddate>20190213</enddate><creator>Dosi, Manan</creator><creator>Lau, Irene</creator><creator>Zhuang, Yichen</creator><creator>Simakov, David S. A</creator><creator>Fowler, Michael W</creator><creator>Pope, Michael A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5793-3392</orcidid><orcidid>https://orcid.org/0000-0002-9761-0336</orcidid></search><sort><creationdate>20190213</creationdate><title>Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene</title><author>Dosi, Manan ; Lau, Irene ; Zhuang, Yichen ; Simakov, David S. A ; Fowler, Michael W ; Pope, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosi, Manan</creatorcontrib><creatorcontrib>Lau, Irene</creatorcontrib><creatorcontrib>Zhuang, Yichen</creatorcontrib><creatorcontrib>Simakov, David S. A</creatorcontrib><creatorcontrib>Fowler, Michael W</creatorcontrib><creatorcontrib>Pope, Michael A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dosi, Manan</au><au>Lau, Irene</au><au>Zhuang, Yichen</au><au>Simakov, David S. A</au><au>Fowler, Michael W</au><au>Pope, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-02-13</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>6166</spage><epage>6173</epage><pages>6166-6173</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30648868</pmid><doi>10.1021/acsami.8b22310</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5793-3392</orcidid><orcidid>https://orcid.org/0000-0002-9761-0336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-02, Vol.11 (6), p.6166-6173 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179387227 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20Electrochemical%20Methane%20Sensors%20Based%20on%20Solid%20Polymer%20Electrolyte-Infused%20Laser-Induced%20Graphene&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dosi,%20Manan&rft.date=2019-02-13&rft.volume=11&rft.issue=6&rft.spage=6166&rft.epage=6173&rft.pages=6166-6173&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b22310&rft_dat=%3Cproquest_cross%3E2179387227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-26c13723968657119d8bdc9ae6dbc2430059bfc9cdcbb8d83f590f84e5cdf5883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179387227&rft_id=info:pmid/30648868&rfr_iscdi=true |