Loading…

DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations

RATIONALE:Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE:To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS:We ge...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2019-03, Vol.124 (6), p.856-873
Main Authors: Chen, Suet Nee, Lombardi, Raffaella, Karmouch, Jennifer, Tsai, Ju-Yun, Czernuszewicz, Grace, Taylor, Matthew R.G, Mestroni, Luisa, Coarfa, Cristian, Gurha, Priyatansh, Marian, Ali J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RATIONALE:Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE:To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS:We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNA mutation is associated with DCM in progeroid syndromes. Expression of LMNA led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNA expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNA mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)—a downstream target of E2F pathway and an activator of TP53—provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNA protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. CONCLUSIONS:Cardiac myocyte-specific expression of LMNA, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target.
ISSN:0009-7330
1524-4571
DOI:10.1161/CIRCRESAHA.118.314238