Loading…
Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach
We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin states, representabl...
Saved in:
Published in: | Physical review letters 2019-02, Vol.122 (4), p.040603-040603, Article 040603 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin states, representable by low-bond dimension matrix product states, and derive equations of motion for them using the time-dependent variational principle. We find that they feature isolated, unstable periodic orbits, which capture the recurrences and represent nonergodic dynamical trajectories. Our results provide a theoretical framework for understanding quantum dynamics in a class of constrained spin models, which allow us to examine the recently suggested explanation of "quantum many-body scarring" [Nat. Phys. 14, 745 (2018)NPAHAX1745-247310.1038/s41567-018-0137-5], and establish a possible connection to the corresponding phenomenon in chaotic single-particle systems. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.122.040603 |