Loading…
Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning
With quantum resources a precious commodity, their efficient use is highly desirable. Quantum autoencoders have been proposed as a way to reduce quantum memory requirements. Generally, an autoencoder is a device that uses machine learning to compress inputs, that is, to represent the input data in a...
Saved in:
Published in: | Physical review letters 2019-02, Vol.122 (6), p.060501-060501, Article 060501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With quantum resources a precious commodity, their efficient use is highly desirable. Quantum autoencoders have been proposed as a way to reduce quantum memory requirements. Generally, an autoencoder is a device that uses machine learning to compress inputs, that is, to represent the input data in a lower-dimensional space. Here, we experimentally realize a quantum autoencoder, which learns how to compress quantum data using a classical optimization routine. We demonstrate that when the inherent structure of the dataset allows lossless compression, our autoencoder reduces qutrits to qubits with low error levels. We also show that the device is able to perform with minimal prior information about the quantum data or physical system and is robust to perturbations during its optimization routine. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.060501 |