Loading…

Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Recent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theran...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cancer research and clinical oncology 2019-05, Vol.145 (5), p.1213-1219
Main Authors: Abed, Ziaeddin, Beik, Jaber, Laurent, Sophie, Eslahi, Neda, Khani, Tahereh, Davani, Elnaz S., Ghaznavi, Habib, Shakeri-Zadeh, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theranostic nanoplatform constructed from iron (III) oxide–gold (Fe 2 O 3 @Au) core–shell nanoparticles to fulfill these aims. The Au shell exhibits surface plasmon resonance, a property that is exploited to realize PTT. The magnetic core enables Fe 2 O 3 @Au to be employed as a magnetic resonance imaging (MRI) contrast agent. Furthermore, the magnetic core has the potential to establish a magnetic drug targeting strategy through which Fe 2 O 3 @Au can be directed to the tumor site by means of magnetic field. To test these potentials, Balb/c mice bearing CT26 colorectal tumor model were intravenously injected with Fe 2 O 3 @Au. Immediately after injection, a magnet was placed on the tumor site for 3 h to concentrate nanoparticles, followed by the near infrared (NIR) laser irradiation. MRI study confirmed the accumulation of nanoparticles within the tumor due to T2 enhancement capability of Fe 2 O 3 @Au. The in vivo thermometry results demonstrated that the tumors in magnetic targeting group had a significantly higher temperature elevation rate upon NIR irradiation than non-targeted group (~ 12 °C vs. 8.5 °C). The in vivo antitumor assessment revealed that systemic injection of Fe 2 O 3 @Au in combination with magnetic targeting and NIR irradiation resulted in complete remission of tumor growth. Therefore, Fe 2 O 3 @Au can establish a targeted PTT strategy for efficient eradication of tumor cells under the guidance of MRI.
ISSN:0171-5216
1432-1335
DOI:10.1007/s00432-019-02870-x