Loading…

Enhanced degradation of sulfamethoxazole by Fe–Mn binary oxide synergetic mediated radical reactions

In this study, a novel Fe–Mn binary oxide (FMBO), which combined the oxidation capability of iron and manganese oxides, was constructed to remove sulfamethoxazole (SMX) effectively using the simultaneous co-precipitation and oxidation methods, and the reaction products were probed by liquid chromato...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2019-05, Vol.26 (14), p.14350-14361
Main Authors: Wu, Kang, Si, Xiongyuan, Jiang, Jin, Si, Youbin, Sun, Kai, Yousaf, Amina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a novel Fe–Mn binary oxide (FMBO), which combined the oxidation capability of iron and manganese oxides, was constructed to remove sulfamethoxazole (SMX) effectively using the simultaneous co-precipitation and oxidation methods, and the reaction products were probed by liquid chromatography-mass spectrometry (LC/MS). Particularly, FMBO-mediated transformation mechanisms of SMX were explored using radical scavengers and electron paramagnetic resonance (EPR). Results indicated that the best removal efficiency was obtained at a pH of 4.0, with the H 2 O 2 of 6.0 mmol/L and the FMBO dosage of 2.0 g/L, giving 97.6% removal of 10 mg/L SMX within 60 min. More importantly, we found that the hydroxyl (•OH) radicals generated by FMBO through Fenton-like reaction were responsible for the SMX oxidation. EPR studies were confirmed that the peak intensities of hydroxyl adduct decreased remarkably with increasing pH values. Moreover, the four SMX degradation intermediate products were detected by LC/MS and a reaction pathway for the possible mineralization of SMX, with •OH radicals as the main oxidant, was proposed. These findings provide a novel insight into the removal of SMX by FMBO-mediated radical reactions in aquatic environments. Moreover, this research suggested that FMBO can act as an efficient catalyst to remove SMX in hospital wastewater.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-04710-4