Loading…
Upward movement of cerebrospinal fluid in obstructive hydrocephalus—revision of an old concept
Purpose The specific pathophysiological processes in many forms of obstructive hydrocephalus (HC) are still unclear. Current concepts of cerebrospinal fluid (CSF) dynamics presume a constant downward flow from the lateral ventricles towards subarachnoid spaces, which are in contrast to neurosurgical...
Saved in:
Published in: | Child's nervous system 2019-05, Vol.35 (5), p.833-841 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The specific pathophysiological processes in many forms of obstructive hydrocephalus (HC) are still unclear. Current concepts of cerebrospinal fluid (CSF) dynamics presume a constant downward flow from the lateral ventricles towards subarachnoid spaces, which are in contrast to neurosurgical observations and findings of MRI flow studies. The aim of our study was to analyze CSF movements in patients with obstructive HC by neuroendoscopic video recordings, X-ray studies, and MRI.
Methods
One hundred seventeen pediatric patients with obstructive HC who underwent neuroendoscopy in our center were included. Video recordings were analyzed in 85 patients. Contrast-enhanced X-rays were conducted during surgery prior to intervention in 75 patients, and flow void signals on pre-operative MRI could be evaluated in 110 patients.
Results
In 83.5% of the video recordings, CSF moved upwards synchronous to inspiration superimposed by cardiac pulsation. Application of contrast medium revealed a flow delay in 52% of the X-ray studies prior to neurosurgery, indicating hindered CSF circulation. The appearances and shapes of flow void signals in 88.2% of the pre-operative MRI studies suggested valve-like mechanisms and entrapment of CSF.
Conclusions
Neuroendoscopic observations in patients with obstructive HC revealed upward CSF movements and the corresponding MRI signs of trapped CSF in brain cavities. These observations are in contrast to the current pathophysiological concept of obstructive HC. However, recent real-time flow MRI studies demonstrated upward movement of CSF, hence support our clinical findings. The knowledge of cranial-directed CSF flow expands our understanding of pathophysiological mechanisms in HC and is the key to effective treatment. |
---|---|
ISSN: | 0256-7040 1433-0350 |
DOI: | 10.1007/s00381-019-04119-x |