Loading…
The signaling effects of ATP on melanoma-like skin cancer
Melanoma is a type of skin cancer originated by the malignant transformation of melanocytes. Increasing incidence and mortality require efforts focused on studies and research about this cancer. Its microenvironment is rich in extracellular ATP, but there are no studies evaluating the ectonucleotida...
Saved in:
Published in: | Cellular signalling 2019-07, Vol.59, p.122-130 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Melanoma is a type of skin cancer originated by the malignant transformation of melanocytes. Increasing incidence and mortality require efforts focused on studies and research about this cancer. Its microenvironment is rich in extracellular ATP, but there are no studies evaluating the ectonucleotidases and ATP effects on tumor-derived melanoma cells with known amounts of ATP. This way, the objective of this work was to evaluate the purinergic signaling in the pathophysiology of in vivo melanoma and the in vitro effects of ATP signaling. We found increased and effective extracellular ATP hydrolysis in platelets and a significant decrease of extracellular ATP levels and adenosine hydrolysis. In addition, we cultured PBMCs of melanoma patients and used ATP salt with specific concentrations to evaluate its signaling effects. The enzymatic activity analysis revealed that even with higher ATP doses cells metabolize adenine nucleotides less efficiently, and present low ATP, ADP and AMP hydrolytic activity in CM compared to CT cells. In summary, we showed for the first time important data about the purinergic signaling in the pathophysiology of melanoma and ATP signaling exercising immunosuppressive effects. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for melanoma management and treatment and could offer novel therapeutic prospects.
•ATP acts an immunosuppressive signaling molecule in melanoma skin cancer.•The ectonucleotidases activities develop an uncompensated inflammatory profile.•eATP released into melanoma microenvironment could offer therapeutic prospects. |
---|---|
ISSN: | 0898-6568 1873-3913 |
DOI: | 10.1016/j.cellsig.2019.03.021 |