Loading…

Terminal Deoxynucleotidyl Transferase-Catalyzed Preparation of pH-Responsive DNA Nanocarriers for Tumor-Targeted Drug Delivery and Therapy

Developing a highly efficient carrier for tumor-targeted delivery and site-specific release of anticancer drugs is a good way to overcome the side effects of traditional cancer chemotherapy. Benefiting from the nontoxic and biocompatible characteristics, DNA-based drug carriers have attracted increa...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-04, Vol.11 (16), p.14684-14692
Main Authors: Sun, Guo-Ying, Du, Yi-Chen, Cui, Yun-Xi, Wang, Jing, Li, Xiao-Yu, Tang, An-Na, Kong, De-Ming
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing a highly efficient carrier for tumor-targeted delivery and site-specific release of anticancer drugs is a good way to overcome the side effects of traditional cancer chemotherapy. Benefiting from the nontoxic and biocompatible characteristics, DNA-based drug carriers have attracted increasing attention. Herein, we reported a novel and readily manipulated strategy to construct spherical DNA nanocarriers. In this strategy, terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA extension reaction is used to prepare a thick DNA layer on a gold nanoparticle (AuNP) surface by extending long poly­(C) sequences from DNA primers immobilized on AuNPs. The poly­(C) extension products can then hybridize with G-rich oligonucleotides to give CG-rich DNA duplexes (for loading anticancer drug doxorubicin, Dox) and multiple AS1411 aptamers. Via synergic recognition of multiple aptamer units to nucleolin proteins, biomarker of malignant tumors, Dox-loaded DNA carrier can be efficiently internalized in cancer cells and achieve burst release of drugs in acidic organelles because of i-motif formation-induced DNA duplex destruction. An as-prepared pH-responsive drug carrier was demonstrated to be promising for highly efficient delivery of Dox and selective killing of cancer cells in both in vitro and in vivo experiments, thus showing a huge potential in anticancer therapy.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b05358