Loading…

Convection of a passive scalar by a quasi-uniform random straining field

The stretching of line elements, surface elements and wave vectors by a random, isotropic, solenoidal velocity field in D dimensions is studied. The rates of growth of line elements and (D – 1)-dimensional surface elements are found to be equal if the statistics are invariant to velocity reversal. T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1974-07, Vol.64 (4), p.737-762
Main Author: Kraichnan, Robert H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stretching of line elements, surface elements and wave vectors by a random, isotropic, solenoidal velocity field in D dimensions is studied. The rates of growth of line elements and (D – 1)-dimensional surface elements are found to be equal if the statistics are invariant to velocity reversal. The analysis is applied to convection of a sparse distribution of sheets of passive scalar in a random straining field whose correlation scale is large compared with the sheet size. This is Batchelor's (1959) κ−1 spectral regime. Some exact analytical solutions are found when the velocity field varies rapidly in time. These include the dissipation spectrum and a joint probability distribution that describes the simultaneous effect of Stretching and molecular diffusivity κ on the amplitude profile of a sheet. The latter leads to probability distributions of the scalar field and its space derivatives. For a growing κ−1 range at zero κ, these derivatives have essentially lognormal statistics. In the steady-state κ−1 regime at κ > 0, intermittencies measured by moment ratios are much smaller than for lognormal statistics, and they increase less rapidly with the order of the derivative than in the κ = 0 case. The κ > 0 distributions have singularities a t zero amplitude, due to a background of highly diffused sheets. The results do not depend strongly on D. But as D → ∞, temporal fluctuations in the stretching rates become negligible and Batchelor's (1959) constant-strain dissipation spectrum is recovered.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112074001881