Loading…
Circular Kardar-Parisi-Zhang interfaces evolving out of the plane
Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surf...
Saved in:
Published in: | Physical review. E 2019-03, Vol.99 (3-1), p.032140-032140, Article 032140 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surface of revolution? To give an answer to this, we report here extensive numerical analyses of several one-dimensional KPZ models on substrates whose size enlarges as 〈L(t)〉=L_{0}+ωt^{γ}, while their mean height 〈h〉 increases as usual [〈h〉∼t]. We show that the competition between the L enlargement and the correlation length (ξ≃ct^{1/z}) plays a key role in the asymptotic statistics of the interfaces. While systems with γ>1/z have HDs given by GUE and the interface width increasing as w∼t^{β}, for γ1/z, the spatial covariances present a strong dependence on the parameters ω and γ, agreeing with Airy_{2} only for ω≫1, for a given γ, or when γ=1, for a fixed ω. These results considerably generalize our knowledge on 1D KPZ systems, unveiling the importance of the background space on their statistics. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/physreve.99.032140 |