Loading…
The Combination of MEK Inhibitor With Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer
This study aimed to characterize the tumor-infiltrating immune cells population in Kras/tumor protein 53 (Trp53)-driven lung tumors and to evaluate the combinatorial antitumor effect with MEK inhibitor (MEKi), trametinib, and immunomodulatory monoclonal antibodies (mAbs) targeting either programmed...
Saved in:
Published in: | Journal of thoracic oncology 2019-06, Vol.14 (6), p.1046-1060 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to characterize the tumor-infiltrating immune cells population in Kras/tumor protein 53 (Trp53)-driven lung tumors and to evaluate the combinatorial antitumor effect with MEK inhibitor (MEKi), trametinib, and immunomodulatory monoclonal antibodies (mAbs) targeting either programmed death -1 (PD-1) or programmed cell death ligand 1 (PD-L1) in vivo.
Trp53FloxFlox;KrasG12D/+;Rosa26LSL-Luciferase/LSL-Luciferase (PKL) genetically engineered mice were used to develop autochthonous lung tumors with intratracheal delivery of adenoviral Cre recombinase. Using these tumor-bearing lungs, tumor-infiltrating immune cells were characterized by both mass cytometry and flow cytometry. PKL-mediated immunocompetent syngeneic and transgenic lung cancer mouse models were treated with MEKi alone as well as in combination with either anti–PD-1 or anti–PD-L1 mAbs. Tumor growth and survival outcome were assessed. Finally, immune cell populations within spleens and tumors were evaluated by flow cytometry and immunohistochemistry.
Myeloid-derived suppressor cells (MDSCs) were significantly augmented in PKL-driven lung tumors compared to normal lungs of tumor-free mice. PD-L1 expression appeared to be highly positive in both lung tumor cells and, particularly MDSCs. The combinatory administration of MEKi with either anti–PD-1 or anti–PD-L1 mAbs synergistically increased antitumor response and survival outcome compared with single-agent therapy in both the PKL-mediated syngeneic and transgenic lung cancer models. Theses combinational treatments resulted in significant increases of tumor-infiltrating CD8+ and CD4+ T cells, whereas attenuation of CD11b+/Gr-1high MDSCs, in particular, Ly6Ghigh polymorphonuclear-MDSCs in the syngeneic model.
These findings suggest a potential therapeutic approach for untargetable Kras/p53-driven lung cancers with synergy between targeted therapy using MEKi and immunotherapies. |
---|---|
ISSN: | 1556-0864 1556-1380 |
DOI: | 10.1016/j.jtho.2019.02.004 |