Loading…
Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy
Targeted delivery of the drug to its therapeutically active site with low immunogenicity and system toxicity is critical for optimal tumor therapy. In this paper, exosomes as naturally-derived nano-sized membrane vesicles are engineered by chimeric peptide for plasma membrane and nucleus targeted ph...
Saved in:
Published in: | Biomaterials 2019-08, Vol.211, p.14-24 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Targeted delivery of the drug to its therapeutically active site with low immunogenicity and system toxicity is critical for optimal tumor therapy. In this paper, exosomes as naturally-derived nano-sized membrane vesicles are engineered by chimeric peptide for plasma membrane and nucleus targeted photosensitizer delivery and synergistic photodynamic therapy (PDT). Importantly, a dual-stage light strategy is adopted for precise PDT by selectively and sequentially destroying the plasma membrane and nucleus of tumor cells. Briefly, plasma membrane-targeted PDT of chimeric peptide engineered exosomes (ChiP-Exo) could directly disrupt the membrane integrity and cause cell death to some extent. More interestingly, the photochemical internalization (PCI) and lysosomal escape triggered by the first-stage light significantly improve the cytosolic delivery of ChiP-Exo, which could enhance its nuclear delivery due to the presence of nuclear localization signals (NLS) peptide. Upon the second-stage light irradiation, the intranuclear ChiP-Exo would activate reactive oxygen species (ROS) in situ to disrupt nuclei for robust and synergistic PDT. Based on exosomes, this dual-stage light guided subcellular dual-targeted PDT strategy exhibits a greatly enhanced therapeutic effect on the inhibition of tumor growth with minimized system toxicity, which also provides a new insight for the development of individualized biomedicine for precise tumor therapy. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2019.05.004 |