Loading…
Ecotoxicity of nanomaterials in amphibians: A critical review
Nanomaterials (NMs) have been used in a growing number of commercial products, and their rapid expansion could lead to their release into the aquatic environments. However, there is limited knowledge about the impact of NMs in the biota, especially the amphibians. The present study revised the histo...
Saved in:
Published in: | The Science of the total environment 2019-10, Vol.686, p.332-344 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanomaterials (NMs) have been used in a growing number of commercial products, and their rapid expansion could lead to their release into the aquatic environments. However, there is limited knowledge about the impact of NMs in the biota, especially the amphibians. The present study revised the historical use of amphibian species as a model system for nanoecotoxicological studies and summarized the data available in the scientific literature about the genotoxic, mutagenic, histopathological, embryotoxic and reproductive effects of NMs in different groups of amphibians. The interaction, bioaccumulation, mode of action (MoA) and ecotoxicity of NMs on amphibians were also revised. The nanoecotoxicological studies were conducted with 11 amphibian species, being eight species of the order Anura and three species of the order Caudata. Xenopus laevis was the most studied species. The studies were conducted mainly with inorganic NMs (72%) compared to organic ones. The nanoecotoxicity depends on NM behavior and transformation in the environment, as well as the developmental stages of amphibians. The known effects of NMs in amphibians were mainly reported with reactive oxygen species (ROS) production, oxidative stress, and genotoxic effects. Results emphasize the need for further studies testing the ecotoxicity of different NMs, concentrations and exposure periods at environmentally relevant approaches. Furthermore, standard protocols for nanoecotoxicological tests using amphibians are required. Revised data showed that amphibians are suitable organisms to assess the environmental impact of NMs and indicated significant research gaps concerning the ecotoxicity of NMs on freshwater ecosystems and recommendations for future researches.
[Display omitted]
•Mode of action and ecotoxicity of NMs on amphibians are revised.•Ecotoxicity of NMs on amphibians is mainly associated to oxidative stress.•Standard protocols for nanoecotoxicological tests using amphibians are required.•Amphibians are key model systems for nanoecotoxicity assessment. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.05.487 |