Loading…
Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation
The formation of rogue waves in shallow water is presented in this Rapid Communication by providing the three lowest-order exact rational solutions to the Korteweg-de Vries (KdV) equation. They have been obtained from the modified KdV equation by using the complex Miura transformation. It is found t...
Saved in:
Published in: | Physical review. E 2019-05, Vol.99 (5-1), p.050201-050201, Article 050201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of rogue waves in shallow water is presented in this Rapid Communication by providing the three lowest-order exact rational solutions to the Korteweg-de Vries (KdV) equation. They have been obtained from the modified KdV equation by using the complex Miura transformation. It is found that the amplitude amplification factor of such waves formed in shallow water is much larger than the amplitude amplification factor of those occurring in deep water. These solutions clearly demonstrate a potential hazard for coastal areas. They can also provide a solid mathematical basis for the existence of abnormally large-amplitude waves in other branches of nonlinear physics such as optics, unidirectional crystal growth, and in quantum mechanics. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.99.050201 |