Loading…

Integrating Activity with Accessibility in Olefin Metathesis: An Unprecedentedly Reactive Ruthenium-Indenylidene Catalyst

Access to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela catalysts, ultimately rests on the nonscaleable transfer of a benzylidene ligand from an unstable, impure aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2019-07, Vol.141 (27), p.10626-10631
Main Authors: Nascimento, Daniel L, Gawin, Anna, Gawin, Rafał, Guńka, Piotr A, Zachara, Janusz, Skowerski, Krzysztof, Fogg, Deryn E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Access to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela catalysts, ultimately rests on the nonscaleable transfer of a benzylidene ligand from an unstable, impure aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive catalysts. A fast-initiating, dimeric indenylidene complex (Ru-1) is reported, which reconciles high activity with scaleable synthesis. Each Ru center in Ru-1 is stabilized by a state-of-the-art cyclic alkyl amino carbene (CAAC, C1) and a bridging chloride donor: the lability of the latter elevates the reactivity of Ru-1 to a level previously attainable only with benzylidene derivatives. Evaluation of initiation rate constants reveals that Ru-1 initiates >250× faster than indenylidene catalyst M2 (RuCl2(H2IMes)­(PCy3)­(Ind)), and 65× faster than UC (RuCl2(C1)2(Ind)). The slow initiation previously regarded as characteristic of indenylidene catalysts is hence due to low ligand lability, not inherently slow cycloaddition at the Ru=CRR′ site. In macrocyclization and “ethenolysis” of methyl oleate (i.e., transformation into α-olefins via cross-metathesis with C2H4), Ru-1 is comparable or superior to the corresponding, breakthrough CAAC-benzylidene catalyst. In ethenolysis, Ru-1 is 5× more robust to standard-grade (99.9%) C2H4 than the top-performing catalyst, probably reflecting steric protection at the quaternary CAAC carbon.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b05362