Loading…
Integrating Activity with Accessibility in Olefin Metathesis: An Unprecedentedly Reactive Ruthenium-Indenylidene Catalyst
Access to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela catalysts, ultimately rests on the nonscaleable transfer of a benzylidene ligand from an unstable, impure aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive...
Saved in:
Published in: | Journal of the American Chemical Society 2019-07, Vol.141 (27), p.10626-10631 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Access to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela catalysts, ultimately rests on the nonscaleable transfer of a benzylidene ligand from an unstable, impure aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive catalysts. A fast-initiating, dimeric indenylidene complex (Ru-1) is reported, which reconciles high activity with scaleable synthesis. Each Ru center in Ru-1 is stabilized by a state-of-the-art cyclic alkyl amino carbene (CAAC, C1) and a bridging chloride donor: the lability of the latter elevates the reactivity of Ru-1 to a level previously attainable only with benzylidene derivatives. Evaluation of initiation rate constants reveals that Ru-1 initiates >250× faster than indenylidene catalyst M2 (RuCl2(H2IMes)(PCy3)(Ind)), and 65× faster than UC (RuCl2(C1)2(Ind)). The slow initiation previously regarded as characteristic of indenylidene catalysts is hence due to low ligand lability, not inherently slow cycloaddition at the Ru=CRR′ site. In macrocyclization and “ethenolysis” of methyl oleate (i.e., transformation into α-olefins via cross-metathesis with C2H4), Ru-1 is comparable or superior to the corresponding, breakthrough CAAC-benzylidene catalyst. In ethenolysis, Ru-1 is 5× more robust to standard-grade (99.9%) C2H4 than the top-performing catalyst, probably reflecting steric protection at the quaternary CAAC carbon. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b05362 |