Loading…

Cell competition and tumorigenesis in the imaginal discs of Drosophila

Cancer is a major health issue and the object of investigations in thousands of laboratories all over the world. Most of cancer research is being carried out in in vitro systems or in animal models, generally mice or rats. However, the discovery of the high degree of genetic identity among metazoans...

Full description

Saved in:
Bibliographic Details
Published in:Seminars in cancer biology 2020-06, Vol.63, p.19-26
Main Authors: Morata, Ginés, Calleja, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer is a major health issue and the object of investigations in thousands of laboratories all over the world. Most of cancer research is being carried out in in vitro systems or in animal models, generally mice or rats. However, the discovery of the high degree of genetic identity among metazoans has prompted investigation in organisms like Drosophila, on the idea that the genetic basis of cancer in flies and humans may have many aspects in common. Moreover, the sophisticated genetic methodology of Drosophila offers operational advantages and allows experimental approaches inaccessible in other species. Cell competition is a cell-quality control process that aims to identifying and subsequently removing cells within animal tissues that are unfit, abnormal or aberrant, and that may compromise the fitness or the viability of the organism. It was originally described in Drosophila imaginal discs but later work has shown it occurs in mammalian tissues where it fulfils similar roles. One aspect of the surveillance role of cell competition is to eliminate oncogenic cells that may appear during development or the life of an organism. In this review we have focussed on the work on Drosophila imaginal discs relating cell competition and tumorigenic processes. We briefly discuss related work in mammalian tissues.
ISSN:1044-579X
1096-3650
DOI:10.1016/j.semcancer.2019.06.010