Loading…
Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress
Although multiple reports using animal models have confirmed that melatonin appears to promote neuroprotective effects following ischemia/reperfusion-induced brain injury, the relationship between its protective effects and activation of autophagy in Purkinje cells following asphyxial cardiac arrest...
Saved in:
Published in: | Experimental neurology 2019-10, Vol.320, p.112983-112983, Article 112983 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although multiple reports using animal models have confirmed that melatonin appears to promote neuroprotective effects following ischemia/reperfusion-induced brain injury, the relationship between its protective effects and activation of autophagy in Purkinje cells following asphyxial cardiac arrest and cardiopulmonary resuscitation (CA/CPR) remains unclear. Rats used in this study were randomly assigned to 6 groups as follows; vehicle-treated sham operated group, vehicle-treated asphyxial CA/CPR operated group, melatonin-treated sham operated group, melatonin-treated asphyxial CA/CPR operated group, PDOT (a MT2 melatonin receptor antagonist) plus (+) melatonin-treated sham operated group and PDOT+melatonin-treated asphyxial CA/CPR operated group. Melatonin (20 mg/kg, i.p., 4 times before CA and 3 times after CA) treatment significantly improved survival rate and neurological deficit compared with the vehicle-treated asphyxial CA/CPR rats (survival rates ≥40% vs 10%), showing that melatonin treatment exhibited protective effect against asphyxial CA/CPR-induced Purkinje cell death. The protective effect of melatonin against CA/CPR-induced Purkinje cell death paralleled a remarkable attenuation of autophagy-like processes (Beclin-1, Atg7 and LC3), as well as a dramatic reduction in superoxide anion radical (O2·-), intense enhancements of CuZn superoxide dismutase (SOD1) and MnSOD (SOD2) expressions. Furthermore, the protective effect was notably reversed by treatment with PDOT, which is a selective MT2 antagonist. In brief, melatonin conferred neuroprotection against asphyxial CA/CPR-induced Purkinje cell death via inhibiting autophagic activation by reducing expressions of O2·- and increasing expressions of antioxidant enzymes, and suggests that MT2 is involved in neuroprotective effect of melatonin against Purkinje cell death caused by asphyxial CA/CPR.
•Melatonin prevents cerebellar Purkinje cell death following asphyxial cardiac arrest.•Melatonin attenuates autophagy-like processes via MT2 receptor.•Melatonin attenuates increase of superoxide anion radical via MT2 receptor.•Melatonin maintains antioxidant enzymes expressions via MT2 receptor. |
---|---|
ISSN: | 0014-4886 1090-2430 |
DOI: | 10.1016/j.expneurol.2019.112983 |