Loading…

Feature selection for nonlinear stochastic system classification

A decision-theoretic formulation is given for the problem of classifying an unknown nonlinear stochastic system into one of M classes when only input-output measurements are available. This leads directly to a pattern recognition solution for the problem, and Bayes-Risk theory yields the likelihood-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1976-06, Vol.21 (3), p.375-378
Main Authors: Hofstadter, R., Saridis, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A decision-theoretic formulation is given for the problem of classifying an unknown nonlinear stochastic system into one of M classes when only input-output measurements are available. This leads directly to a pattern recognition solution for the problem, and Bayes-Risk theory yields the likelihood-ratio test for class determinations. Parameterizations which yield an implicit description for unknown nonlinear systems are considered, and the theoretical likelihood ratio is related to these parameterizations. The problem of initial feature selection is considered in terms of a parameter vector, and in terms of a quasimoment expansion, both of which require no a priori knowledge of the system. Certain experimental results are cited.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.1976.1101231