Loading…

Virtual Reality-Based Evaluation of Surgical Planning and Outcome of Monosegmental, Unilateral Cervical Foraminal Stenosis

Foraminal cervical nerve root compression can be caused by lateral disk herniation or osteophyte formation of the vertebrae. Improved diagnosis and evaluation can be achieved using different imaging techniques: radiographs, computed tomography (CT), and magnetic resonance imaging. We retrospectively...

Full description

Saved in:
Bibliographic Details
Published in:World neurosurgery 2019-09, Vol.129, p.e857-e865
Main Authors: Zawy Alsofy, Samer, Stroop, Ralf, Fusek, Ivo, Welzel Saravia, Heinz, Sakellaropoulou, Ioanna, Yavuz, Murat, Ewelt, Christian, Nakamura, Makoto, Fortmann, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Foraminal cervical nerve root compression can be caused by lateral disk herniation or osteophyte formation of the vertebrae. Improved diagnosis and evaluation can be achieved using different imaging techniques: radiographs, computed tomography (CT), and magnetic resonance imaging. We retrospectively evaluated the potential influence of a virtual reality (VR) visualization technique on surgery planning and evaluation of postoperative results in patients with monosegmental, unilateral osseous cervical neuroforaminal stenosis. Seventy-three patients were included. Ventral decompression of the neuroforamen was performed in 41 patients, dorsal decompression in 32 patients. Patients' files were evaluated. CT scans were visualized via VR software to measure the smallest cross-sectional area of the intervertebral neuroforamen in the lateral resection region. A questionnaire evaluated the influence of VR technique on surgical planning and strategy. The VR-technique had a moderate influence on the choice of the approach (ventral or dorsal), a significant influence on the ventral approach strategy, and no influence on the positioning of the patient or the dorsal approach strategy. A significant difference was found in the size of the smallest cross-sectional area of the intervertebral neuroforamen in the lateral resection region between ventral and dorsal approaches, with no correlation to the clinical outcome. Reconstruction of pre- and postoperative 2D-CT images of the cervical spine into 3D images, and the spatial and anatomical reconstructions in VR models, can be helpful in planning surgical approaches and treatment strategies for patients with cervical foraminal stenoses, and for evaluation of their postoperative results.
ISSN:1878-8750
1878-8769
DOI:10.1016/j.wneu.2019.06.057