Loading…
Realization of an Acoustic Third-Order Topological Insulator
The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in the search for novel topological materials and metamaterials. Second-order TIs have been implemented in two-dimensional (2D) systems exhibiting topological "corner states," as well as three-di...
Saved in:
Published in: | Physical review letters 2019-06, Vol.122 (24), p.244301-244301, Article 244301 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in the search for novel topological materials and metamaterials. Second-order TIs have been implemented in two-dimensional (2D) systems exhibiting topological "corner states," as well as three-dimensional (3D) systems having one-dimensional (1D) topological "hinge states." Third-order TIs, which have topological states three dimensions lower than the bulk (which must thus be 3D or higher), have not yet been reported. Here, we describe the realization of a third-order TI in an anisotropic diamond-lattice acoustic metamaterial. The bulk acoustic band structure has nontrivial topology characterized by quantized Wannier centers. By direct acoustic measurement, we observe corner states at two corners of a rhombohedronlike structure, as predicted by the quantized Wannier centers. This work extends topological corner states from 2D to 3D, and may find applications in novel acoustic devices. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.122.244301 |