Loading…

A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images

This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2019-09, Vol.57 (9), p.2027-2043
Main Authors: Cui, Yuxin, Zhang, Guiying, Liu, Zhonghao, Xiong, Zheng, Hu, Jianjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83
cites cdi_FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83
container_end_page 2043
container_issue 9
container_start_page 2027
container_title Medical & biological engineering & computing
container_volume 57
creator Cui, Yuxin
Zhang, Guiying
Liu, Zhonghao
Xiong, Zheng
Hu, Jianjun
description This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000×1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation . Graphical Abstract The neural network for nuclei segmentation
doi_str_mv 10.1007/s11517-019-02008-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265751005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265751005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83</originalsourceid><addsrcrecordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwGcSlwhxSUg0UFuOM8kGJfZiO0L8e7wsh0RBNcX75s3xEDqm5JwSUl1ESiWtCkJVQRghdVFvoQWtBC2IEGIbLQgVJMu03kP7Mb4QwqhkYhftccpFqYRaIHOJW4AVHsEEN7gem7H3YUjLCXc-YO-giCnr1rvk54DNmwmA3WxHGHCEfgKXTBq8w77DyyEmvzJp6Uffv-NhMj3EQ7TTmTHC0Vc9QM83109Xd8XD4-391eVDYXklU1FLxQwTtm2kZUIpXnJmWtaJ0lSNoEZyY3kDilEBbQOgOO-YtHVpSVOptuYH6Gzjuwr-dYaY9DREC-NoHPg5asZKWcn8OJnR0z_oS77N5e3WFK8UZ0xlim0oG3yMATq9Cvmk8K4p0esA9CYAnQPQnwHo9RYnX9ZzM0H70_L98QzwDRCz5HoIv7P_sf0A5ZiRLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263793229</pqid></control><display><type>article</type><title>A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Cui, Yuxin ; Zhang, Guiying ; Liu, Zhonghao ; Xiong, Zheng ; Hu, Jianjun</creator><creatorcontrib>Cui, Yuxin ; Zhang, Guiying ; Liu, Zhonghao ; Xiong, Zheng ; Hu, Jianjun</creatorcontrib><description>This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000×1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation . Graphical Abstract The neural network for nuclei segmentation</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-019-02008-8</identifier><identifier>PMID: 31346949</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Boundary maps ; Computer Applications ; Databases, Factual ; Deep Learning ; Female ; Histocytochemistry - methods ; Histopathology ; Human Physiology ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image resolution ; Image segmentation ; Imaging ; Male ; Neoplasms - pathology ; Neural networks ; Neural Networks, Computer ; Nuclei ; Original Article ; Post-production processing ; Radiology ; Source code</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2019-09, Vol.57 (9), p.2027-2043</ispartof><rights>International Federation for Medical and Biological Engineering 2019</rights><rights>Medical &amp; Biological Engineering &amp; Computing is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83</citedby><cites>FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83</cites><orcidid>0000-0002-8725-6660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2263793229/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2263793229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31346949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Yuxin</creatorcontrib><creatorcontrib>Zhang, Guiying</creatorcontrib><creatorcontrib>Liu, Zhonghao</creatorcontrib><creatorcontrib>Xiong, Zheng</creatorcontrib><creatorcontrib>Hu, Jianjun</creatorcontrib><title>A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000×1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation . Graphical Abstract The neural network for nuclei segmentation</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Boundary maps</subject><subject>Computer Applications</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Histocytochemistry - methods</subject><subject>Histopathology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Male</subject><subject>Neoplasms - pathology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclei</subject><subject>Original Article</subject><subject>Post-production processing</subject><subject>Radiology</subject><subject>Source code</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kTlPxDAQhS0EguX4AxTIEg1NwGcSlwhxSUg0UFuOM8kGJfZiO0L8e7wsh0RBNcX75s3xEDqm5JwSUl1ESiWtCkJVQRghdVFvoQWtBC2IEGIbLQgVJMu03kP7Mb4QwqhkYhftccpFqYRaIHOJW4AVHsEEN7gem7H3YUjLCXc-YO-giCnr1rvk54DNmwmA3WxHGHCEfgKXTBq8w77DyyEmvzJp6Uffv-NhMj3EQ7TTmTHC0Vc9QM83109Xd8XD4-391eVDYXklU1FLxQwTtm2kZUIpXnJmWtaJ0lSNoEZyY3kDilEBbQOgOO-YtHVpSVOptuYH6Gzjuwr-dYaY9DREC-NoHPg5asZKWcn8OJnR0z_oS77N5e3WFK8UZ0xlim0oG3yMATq9Cvmk8K4p0esA9CYAnQPQnwHo9RYnX9ZzM0H70_L98QzwDRCz5HoIv7P_sf0A5ZiRLw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cui, Yuxin</creator><creator>Zhang, Guiying</creator><creator>Liu, Zhonghao</creator><creator>Xiong, Zheng</creator><creator>Hu, Jianjun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8725-6660</orcidid></search><sort><creationdate>20190901</creationdate><title>A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images</title><author>Cui, Yuxin ; Zhang, Guiying ; Liu, Zhonghao ; Xiong, Zheng ; Hu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Boundary maps</topic><topic>Computer Applications</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Histocytochemistry - methods</topic><topic>Histopathology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Male</topic><topic>Neoplasms - pathology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclei</topic><topic>Original Article</topic><topic>Post-production processing</topic><topic>Radiology</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yuxin</creatorcontrib><creatorcontrib>Zhang, Guiying</creatorcontrib><creatorcontrib>Liu, Zhonghao</creatorcontrib><creatorcontrib>Xiong, Zheng</creatorcontrib><creatorcontrib>Hu, Jianjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yuxin</au><au>Zhang, Guiying</au><au>Liu, Zhonghao</au><au>Xiong, Zheng</au><au>Hu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>2027</spage><epage>2043</epage><pages>2027-2043</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000×1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation . Graphical Abstract The neural network for nuclei segmentation</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31346949</pmid><doi>10.1007/s11517-019-02008-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8725-6660</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2019-09, Vol.57 (9), p.2027-2043
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_2265751005
source Business Source Ultimate; ABI/INFORM Global; Springer Link
subjects Algorithms
Artificial neural networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Boundary maps
Computer Applications
Databases, Factual
Deep Learning
Female
Histocytochemistry - methods
Histopathology
Human Physiology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image resolution
Image segmentation
Imaging
Male
Neoplasms - pathology
Neural networks
Neural Networks, Computer
Nuclei
Original Article
Post-production processing
Radiology
Source code
title A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20algorithm%20for%20one-step%20contour%20aware%20nuclei%20segmentation%20of%20histopathology%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Cui,%20Yuxin&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=2027&rft.epage=2043&rft.pages=2027-2043&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-019-02008-8&rft_dat=%3Cproquest_cross%3E2265751005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-8592a24cdb5c24993632ad2f46a7b41a53ac3be9214edbee933f25c86c0b79d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2263793229&rft_id=info:pmid/31346949&rfr_iscdi=true