Loading…
A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study
Rationally designed, pH sensitive self-assembling β-peptides (SAPs) which are capable of reversibly switching between fluid and gel phases in response to environmental triggers are potentially useful injectable scaffolds for skeletal tissue engineering applications. SAP P11-4 (CH3COQQRFEWEFEQQNH2) h...
Saved in:
Published in: | Bone (New York, N.Y.) N.Y.), 2019-10, Vol.127, p.602-611 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rationally designed, pH sensitive self-assembling β-peptides (SAPs) which are capable of reversibly switching between fluid and gel phases in response to environmental triggers are potentially useful injectable scaffolds for skeletal tissue engineering applications. SAP P11-4 (CH3COQQRFEWEFEQQNH2) has been shown to nucleate hydroxyapatite mineral de novo and has been used in dental enamel regeneration. We hypothesised that addition of mesenchymal stromal cells (MSCs) would enhance the in vivo effects of P11-4 in promoting skeletal tissue repair. Cranial defects were created in athymic rats and filled with either Bio-Oss® (anorganic bone chips) or P11-4 ± human dental pulp stromal cells (HDPSCs). Unfilled defects served as controls. After 4 weeks, only those defects filled with P11-4 alone showed significantly increased bone regeneration (almost complete healing), compared to unfilled control defects, as judged using quantitative micro-CT, histology and immunohistochemistry. In silico modelling indicated that fibril formation may be essential for any mineral nucleation activity. Taken together, these data suggest that self-assembling peptides are a suitable scaffold for regeneration of bone tissue in a one step, cell-free therapeutic approach. |
---|---|
ISSN: | 8756-3282 1873-2763 |
DOI: | 10.1016/j.bone.2019.06.020 |