Loading…

Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation

[Display omitted] Multifunctional biomaterials that can provide physical, electrical, and structural cues to cells and tissues are highly desirable to mimic the important characteristics of native tissues and efficiently modulate cellular behaviors. Especially, electrically conductive biomaterials c...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2019-10, Vol.97, p.141-153
Main Authors: Park, Junggeon, Choi, Jang Hee, Kim, Semin, Jang, Inseok, Jeong, Sungho, Lee, Jae Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Multifunctional biomaterials that can provide physical, electrical, and structural cues to cells and tissues are highly desirable to mimic the important characteristics of native tissues and efficiently modulate cellular behaviors. Especially, electrically conductive biomaterials can efficiently deliver electrical signals to living systems; however, the production of conductive biomaterials presenting multiple cell interactive cues is still a great challenge. In this study, we fabricafed an electrically conductive, mechanically soft, and topographically active hydrogel by micropatterning a graphene oxide (GO)-incorporated polyacrylamide hydrogel (GO/PAAm) with femtosecond laser ablation (FLA) and subsequent chemical reduction. FLA parameters were optimized to efficiently produce distinct line patterns on GO/PAAm hydrogels to induce myoblast alignment and maturation. The line patterns distances (PD) were varied to have different topographies (20–80 μm PD). In vitro studies with C2C12 myoblasts revealed that the micopatterned hydrogels are superior to the unpatterned substrates in inducing myogenesis and myotube alignment. Reduced GO/PAAm with 50 μm PD, i.e., PD50/r(GO/PAAm), showed the best results among the various features for differentiation and myotube alignment. Electrical stimulation of myoblasts on the micropatterned conductive hydrogels further promoted the differentiation of myoblasts. In vivo implantation studies indicated good tissue compatibility of PD50/r(GO/PAAm) samples. Altogether, we successfully demonstrated that the micropatterned r(GO/PAAm) may offer multiple properties capable of positively affecting myoblast responses. This hydrogel may serve as an effective multifunctional biomaterial, which possesses the topography for cell alignment/maturation, mechanical properties of the native skeletal muscle tissue, and desirable electrical conductivity for delivering electrical signals to cells, for various biomedical applications such as muscle tissue scaffolds. Micropatterned conductive hydrogels were created by polymerization of a graphene oxide-incorporated polyacrylamide hydrogel, micropatterning with femtosecond laser ablation, and chemical reduction, which can mimic important characteristics of native skeletal muscle tissues. The micropatterned conductive hydro-gels promoted myogenesis/alignment, enabled electrical stimulation of myoblasts, and displayed good tissue compatibility, which can therefore serve as a multifun
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2019.07.044