Loading…
Metabolic reprogramming orchestrates CD4+ T-cell immunological status and restores cardiac dysfunction in autoimmune induced-dilated cardiomyopathy mice
Cellular autoimmune responses, especially those mediated by T-cells, play vital roles in the immunopathogenesis of dilated cardiomyopathy (DCM). Metabolic reprogramming directly controls T-cell function, imprinting distinct functional fates. However, its contribution to T-cell dysfunction and the im...
Saved in:
Published in: | Journal of molecular and cellular cardiology 2019-10, Vol.135, p.134-148 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cellular autoimmune responses, especially those mediated by T-cells, play vital roles in the immunopathogenesis of dilated cardiomyopathy (DCM). Metabolic reprogramming directly controls T-cell function, imprinting distinct functional fates. However, its contribution to T-cell dysfunction and the immunopathogenesis of DCM is unknown. Here, we found that in DCM patients, CD4+ T-cells exhibited immune dysfunction and glycolytic metabolic reprogramming based on extracellular acidification and oxygen consumption rates. Similar results were observed in splenic and cardiac CD4+ T-cells from autoimmune-induced DCM mice. In vitro, the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed T-cell dysfunction; thus, heightened metabolic activity directly controls CD4+ T-cell immunological status. Adoptive transfer of CD4+ T-cells from DCM mice to normal recipients induced cardiac remodeling and cardiac T-cell dysfunction. Strikingly, these effects were abolished by preconditioning cells with 2-DG, indicating that CD4+ T-cell dysfunction partially induced by metabolic reprogramming contributes to cardiac remodeling. Moreover, the microRNA let-7i modulated the metabolism and function of T-cells from DCM mice by directly targeting Myc. Collectively, our results show that metabolic reprogramming occurs in T-cells of autoimmune-induced DCM mice and patients. Further, our findings highlight that glycolytic metabolism is a critical contributor to T-cell dysfunction and DCM immunopathogenesis. Our data position the modulation of the metabolism as a central integrator for T-cell function, representing a promising strategy against autoimmune-mediated DCM progression. |
---|---|
ISSN: | 0022-2828 1095-8584 |
DOI: | 10.1016/j.yjmcc.2019.08.002 |